DNA methylation, imprinting and cancer

被引:107
作者
Plass, C
Soloway, PD
机构
[1] Ohio State Univ, Div Human Canc Genet, Med Res Facil 494A, Columbus, OH 43210 USA
[2] Ohio State Univ, Ctr Comprehens Canc, Columbus, OH 43210 USA
[3] Roswell Pk Canc Inst, Dept Mol & Cellular Biol, Buffalo, NY 14263 USA
关键词
DNA methylation; CpG island; cancer; genomic imprinting;
D O I
10.1038/sj.ejhg.5200768
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
It is well known that a variety of genetic changes influence the development and progression of cancer. These changes may result from inherited or spontaneous mutations that are not corrected by repair mechanisms prior to DNA replication. It is increasingly clear that so called epigenetic effects that do not affect the primary sequence of the genome also play an important role in tumorigenesis. This was supported initially by observations that cancer genomes undergo changes in their methylation state and that control of parental allele-specific methylation and expression of imprinted loci is lost in several cancers. Many loci acquiring aberrant methylation in cancers have since been identified and shown to be silenced by DNA methylation. In many cases, this mechanism of silencing inactivates tumour suppressors as effectively as frank mutation and is one of the cancer-predisposing hits described in Knudson's two hit hypothesis. In contrast to mutations which are essentially irreversible, methylation changes are reversible, raising the possibility of developing therapeutics based on restoring the normal methylation state to cancer-associated genes. Development of such therapeutics will require identifying loci undergoing methylation changes in cancer, understanding how their methylation influences tumorigenesis and identifying the mechanisms regulating the methylation state of the genome. The purpose of this review is to summarise what is known about these issues.
引用
收藏
页码:6 / 16
页数:11
相关论文
共 126 条
[1]   Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours [J].
Agathanggelou, A ;
Honorio, S ;
Macartney, DP ;
Martinez, A ;
Dallol, A ;
Radar, J ;
Fullwood, P ;
Chauhan, A ;
Walker, R ;
Shaw, JA ;
Hosoe, S ;
Lerman, MI ;
Minna, JD ;
Maher, ER ;
Latif, F .
ONCOGENE, 2001, 20 (12) :1509-1518
[2]   Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 [J].
Amir, RE ;
Van den Veyver, IB ;
Wan, M ;
Tran, CQ ;
Francke, U ;
Zoghbi, HY .
NATURE GENETICS, 1999, 23 (02) :185-188
[3]   NUMBER OF CPG ISLANDS AND GENES IN HUMAN AND MOUSE [J].
ANTEQUERA, F ;
BIRD, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1993, 90 (24) :11995-11999
[4]   Methylation-independent silencing of the p73 gene in neuroblastoma [J].
Banelli, B ;
Casciano, I ;
Romani, M .
ONCOGENE, 2000, 19 (39) :4553-4556
[5]   Genomic imprinting in mammals [J].
Bartolomei, MS ;
Tilghman, SM .
ANNUAL REVIEW OF GENETICS, 1997, 31 :493-525
[6]   EPIGENETIC MECHANISMS UNDERLYING THE IMPRINTING OF THE MOUSE H19-GENE [J].
BARTOLOMEI, MS ;
WEBBER, AL ;
BRUNKOW, ME ;
TILGHMAN, SM .
GENES & DEVELOPMENT, 1993, 7 (09) :1663-1673
[7]   DNA hypermethylation in tumorigenesis - epigenetics joins genetics [J].
Baylin, SB ;
Herman, JG .
TRENDS IN GENETICS, 2000, 16 (04) :168-174
[8]  
Baylin SB, 1998, ADV CANCER RES, V72, P141
[9]   Increased cytosine DNA-methyltransferase activity is target-cell-specific and an early event in lung cancer [J].
Belinsky, SA ;
Nikula, KJ ;
Baylin, SB ;
Issa, JPJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (09) :4045-4050
[10]   Methylation of a CTCF-dependent boundary controls imprinted expression of the Igf2 gene [J].
Bell, AC ;
Felsenfeld, G .
NATURE, 2000, 405 (6785) :482-485