Taxation, migration, and pollution

被引:11
作者
Sandmo, A [1 ]
Wildasin, DE
机构
[1] Norwegian Sch Econ & Business Adm, N-5035 Bergen, Norway
[2] Vanderbilt Univ, Dept Econ, Nashville, TN 37235 USA
关键词
taxation; migration; pollution; quotas vs. tariffs;
D O I
10.1023/A:1008695719961
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper analyzes optimal fiscal, environmental and immigration policy for a single jurisdiction. In the presence of immigration quotas, taxes on the output of externality-producing industries should be higher than indicated by the standard rule for Pigovian corrective taxation. Immigration quotas are not optimal if fiscal instruments can be used to control immigration, and relaxation of immigration quotas generally increases domestic welfare. If optimal taxes are imposed on immigrants, no immigration quota should be imposed, and a version of the traditional Pigovian rule characterizes optimal taxation of domestic externalities. If production in the immigrants' country of origin causes trans-boundary spillovers, domestic welfare can be improved by lighter taxation of immigrants or by further relaxation of immigration quotas.
引用
收藏
页码:39 / 59
页数:21
相关论文
共 22 条
[1]   CLUBS, LOCAL PUBLIC-GOODS AND TRANSPORTATION MODELS - A SYNTHESIS [J].
BERGLAS, E ;
PINES, D .
JOURNAL OF PUBLIC ECONOMICS, 1981, 15 (02) :141-162
[2]  
BOVENBERG L, 1995, INT TAX PUBLIC FINAN, V2, P151
[3]   STRATEGIC CONTROL OF GROWTH IN A SYSTEM OF CITIES [J].
BRUECKNER, JK .
JOURNAL OF PUBLIC ECONOMICS, 1995, 57 (03) :393-416
[4]  
BURTRAW D, 1993, QE9322 RES FUT
[5]   Environmental taxes, international capital mobility and inefficient tax systems: Tax burden vs. tax shifting [J].
De Mooij, RA ;
Bovenberg, AL .
INTERNATIONAL TAX AND PUBLIC FINANCE, 1998, 5 (01) :7-39
[6]  
Goulder L., 1995, INT TAX PUBLIC FINAN, V2, P157, DOI [10.1007/BF00877495, https://doi.org/10.1007/BF00877495]
[7]  
HAMALINEN S, 1996, UNPUB OPTIMAL COMMOD
[8]  
HUFBAUER G, 1992, N AM FREE TRADE ISSU
[9]  
MALER KG, 1991, EC NEW EUROPE
[10]  
MANSOORIAN A, 1993, UNPUB COMP GOVT OBJE