Improved Gauss-Newton optimisation methods in affine registration of SPECT brain images

被引:61
作者
Salas-Gonzalez, D. [1 ]
Gorriz, J. M. [1 ]
Ramirez, J. [1 ]
Lass, A. [1 ]
Puntonet, C. G. [2 ]
机构
[1] Univ Granada, Dept Signal Theory Networking & Commun, E-18071 Granada, Spain
[2] Univ Granada, Dept Comp Architecture & Comp Technol, E-18071 Granada, Spain
关键词
D O I
10.1049/el:20081838
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In single photon emission computed tomography images, the differences between brains of different subjects require the normalisation of the images with respect to a reference template. The general affine model with 12 parameters is usually chosen as a first normalisation procedure. Usually, the Levenberg-Marquardt or mostly the Gauss-Newton method are used in order to optimise a cost function, which presents an extreme value when the image matches with the template. In this reported work, these optimisation algorithms are compared with two alternative versions of the Gauss-Newton method. Both proposed alternatives include an additional parameter, which allows the adaptive change of the step length along the descent direction. Experimental and simulated results show that the inclusion of this parameter improves the convergence rate considerably.
引用
收藏
页码:1291 / U8
页数:2
相关论文
共 6 条
[1]  
Friston K, 2007, STATISTICAL PARAMETRIC MAPPING: THE ANALYSIS OF FUNCTIONAL BRAIN IMAGES, P1
[2]  
Levenberg K., 1944, Quart. Appl. Math, V2, P164, DOI [10.1090/QAM/10666, 10.1090/qam/10666, DOI 10.1090/QAM/10666]
[3]  
Marquardt D. W., 1963, SIAM J APPL MATH, V11, P431, DOI [10.1137/0111030, DOI 10.1137/0111030]
[4]  
Thévenaz P, 2000, IEEE T IMAGE PROCESS, V9, P2083, DOI 10.1109/83.887976
[5]  
Wood K. A., 1998, Corella, V22, P1
[6]  
Wright Stephen, 1999, SPRINGER SCI, V35, P7