Two distinct crt gene clusters for two different functional classes of carotenoid in Bradyrhizobium

被引:37
作者
Giraud, E
Hannibal, L
Fardoux, J
Jaubert, M
Jourand, P
Dreyfus, B
Sturgis, JN
Verméglio, A
机构
[1] Univ Montpellier 2, Lab Symbioses Trop & Mediterraneennes, Ctr Cooperat Int Rech Agron Dev Agro Montpellier, Inst Rech Dev,INRA, F-34398 Montpellier 5, France
[2] Inst Biol Struct & Microbiol, Lab Ingn Syst Macromol, UPR 9027, CNRS, F-13402 Marseille 20, France
[3] CEA Cadarache, Dept Ecophysiol Vegetale & Microbiol, Lab Bioenerget Cellulaire, UMR 163,CNRS, F-13108 St Paul Les Durance, France
关键词
D O I
10.1074/jbc.M312113200
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Aerobic photosynthetic bacteria possess the unusual characteristic of producing different classes of carotenoids. In this study, we demonstrate the presence of two distinct crt gene clusters involved in the synthesis of spirilloxanthin and canthaxanthin in a Bradyrhizobium strain. Each cluster contains the genes crtE, crtB, and crtI leading to the common precursor lycopene. We show that spirilloxanthin is associated with the photosynthetic complexes, while canthaxanthin protects the bacteria from oxidative stress. Only the spirilloxanthin crt genes are regulated by light via the control of a bacteriophytochrome. Despite this difference in regulation, the biosyntheses of both carotenoids are strongly interconnected at the level of the common precursors. Phylogenetic analysis suggests that the canthaxanthin crt gene cluster has been acquired by a lateral gene transfer. This acquisition may constitute a major selective advantage for this class of bacteria, which photosynthesize only under conditions where harmful reactive oxygen species are generated.
引用
收藏
页码:15076 / 15083
页数:8
相关论文
共 42 条
[1]  
ALBERTI M, 1995, ANOXYGENIC PHOTOSYNT, P775
[3]   Genetics of eubacterial carotenoid biosynthesis: A colorful tale [J].
Armstrong, GA .
ANNUAL REVIEW OF MICROBIOLOGY, 1997, 51 :629-659
[4]   Bacteriophytochromes are photochromic histidine kinases using a biliverdin chromophore [J].
Bhoo, SH ;
Davis, SJ ;
Walker, J ;
Karniol, B ;
Vierstra, RD .
NATURE, 2001, 414 (6865) :776-779
[5]  
BRAMLEY PM, 1988, CURR TOP CELL REGUL, V29, P291
[6]   DNA sequence analysis of the photosynthesis region of Rhodobacter sphaeroides 2.4.1 [J].
Choudhary, M ;
Kaplan, S .
NUCLEIC ACIDS RESEARCH, 2000, 28 (04) :862-867
[7]   Genes and enzymes of carotenoid biosynthesis in plants [J].
Cunningham, FX ;
Gantt, E .
ANNUAL REVIEW OF PLANT PHYSIOLOGY AND PLANT MOLECULAR BIOLOGY, 1998, 49 :557-583
[8]   Bacteriophytochromes: Phytochrome-like photoreceptors from nonphotosynthetic eubacteria [J].
Davis, SJ ;
Vener, AV ;
Vierstra, RD .
SCIENCE, 1999, 286 (5449) :2517-2520
[9]  
FELSENSTEIN J, 1985, EVOLUTION, V39, P783, DOI 10.1111/j.1558-5646.1985.tb00420.x
[10]   Photosynthetic rhizobia [J].
Fleischman, D ;
Kramer, D .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 1998, 1364 (01) :17-36