Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4

被引:257
作者
Wu, Y. [1 ]
Murugan, A. Vadivel
Manthiram, A.
机构
[1] Univ Texas Austin, Elect Energy Lab, Austin, TX 78712 USA
[2] Univ Texas Austin, Mat Sci & Engn Program, Austin, TX 78712 USA
关键词
D O I
10.1149/1.2948350
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Layered Li[Li0.2Mn0.54Co0.13Ni0.13]O-2 cathode, which is a solid solution between layered Li[Li1/3Mn2/3]O-2 and Li[Ni1/3Mn1/3Co1/3]O-2, has been surface modified with various amounts (0-4 wt %) of AlPO4 and characterized by X-ray diffraction, transmission electron microscopy, X-ray photoelectron spectroscopy, and electrochemical measurements in lithium cells. Annealing the surface-modified samples at 400 and 700 degrees C leads to the formation of Li3PO4 on the surface and an incorporation of some Al3+ into the layered oxide lattice. More importantly, surface modification with AlPO4 (< 4 wt %) increases the discharge capacity and drastically reduces the irreversible capacity loss in the first cycle compared to the values observed with the pristine (unmodified) sample. For example, the irreversible capacity loss decreases from 75 to 27 mAh/g and the discharge capacity increases from 253 to 279 mAh/g on surface modification with 2 wt % AlPO4. The results are explained based on the retention of more oxide ion vacancies in the layered lattice after surface modification. (C) 2008 The Electrochemical Society.
引用
收藏
页码:A635 / A641
页数:7
相关论文
共 27 条
[1]   Microstructure of LiCoO2 with and without "AIPO4" nanoparticle coating:: Combined STEM and XPS studies [J].
Appapillai, Anjuli T. ;
Mansour, Azzam N. ;
Cho, Jaephil ;
Shao-Horn, Yang .
CHEMISTRY OF MATERIALS, 2007, 19 (23) :5748-5757
[2]   Factors influencing the irreversible oxygen loss and reversible capacity in layered Li[Li1/3Mn2/3]O2-Li[M]O2 (M=Mn0.5-yNi0.5-yCo2y and Ni1-yCoy) solid solutions [J].
Arinkumar, T. A. ;
Wu, Y. ;
Manthiram, A. .
CHEMISTRY OF MATERIALS, 2007, 19 (12) :3067-3073
[3]   Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2 [J].
Armstrong, A. Robert ;
Holzapfel, Michael ;
Novak, Petr ;
Johnson, Christopher S. ;
Kang, Sun-Ho ;
Thackeray, Michael M. ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (26) :8694-8698
[4]   A novel fabrication technique for producing dense Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2, 0 ≤ x ≤ 1/2 [J].
Barkhouse, DAR ;
Dahn, JR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (04) :A746-A751
[5]   Influence of aluminum doping on the properties of LiCoO2 and LiNi0.5Co0.5O2 oxides [J].
Castro-García, S ;
Castro-Couceiro, A ;
Señaris-Rodriguez, MA ;
Soulette, F ;
Julien, C .
SOLID STATE IONICS, 2003, 156 (1-2) :15-26
[6]  
Cho J, 2000, ELECTROCHEM SOLID ST, V3, P362
[7]   Comparison of Al2O3- and AlPO4-coated LiCoO2 cathode materials for a Li-ion cell [J].
Cho, J ;
Kim, TG ;
Kim, C ;
Lee, JG ;
Kim, YW ;
Park, B .
JOURNAL OF POWER SOURCES, 2005, 146 (1-2) :58-64
[8]   Correlation between AlPO4 nanoparticle coating thickness on LiCoO2 cathode and thermal stability [J].
Cho, J .
ELECTROCHIMICA ACTA, 2003, 48 (19) :2807-2811
[9]   Improved thermal stability of LiCoO2 by nanoparticle AlPO4 coating with respect to spinel Li1.05Mn1.95O4 [J].
Cho, J .
ELECTROCHEMISTRY COMMUNICATIONS, 2003, 5 (02) :146-148
[10]   Effect of synthesis condition on the structural and electrochemical properties of Li[Ni1/3Mn1/3Co1/3]O2 prepared by carbonate co-precipitation method [J].
Cho, TH ;
Park, SM ;
Yoshio, M ;
Hirai, T ;
Hideshima, Y .
JOURNAL OF POWER SOURCES, 2005, 142 (1-2) :306-312