Mechanism and thermodynamics of guanidinium chloride-induced denaturation of ALS-associated mutant Cu,Zn superoxide dismutases

被引:58
作者
Rumfeldt, JAO
Stathopulos, PB
Chakrabarrty, A
Lepock, JR
Meiering, EM [1 ]
机构
[1] Univ Waterloo, Guelph Waterloo Ctr Grad Work Chem & Biochem, Waterloo, ON N2L 3G1, Canada
[2] Univ Waterloo, Dept Chem, Waterloo, ON N2L 3G1, Canada
[3] Univ Toronto, Ontario Canc Inst, Dept Med Biophys, Toronto, ON M5G 2M9, Canada
[4] Univ Toronto, Ontario Canc Inst, Dept Biochem, Toronto, ON M5G 2M9, Canada
基金
加拿大健康研究院;
关键词
superoxide dismutase; amyotrophic lateral sclerosis; protein stability and folding; dimeric protein; guanidine hydrochloride denaturation;
D O I
10.1016/j.jmb.2005.10.042
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Mutations in human copper zinc superoxide dismutase (hSOD) that are associated with amyotrophic lateral sclerosis (ALS) have been proposed to destabilize the protein and thereby enhance toxic protein aggregation. In previous studies, denaturation of metallated (holo) hSODs was found to be irreversible, and complicated by the formation of intermolecular disulfide bonds. Here, ALS-associated mutations (E100G, G93A, G85R and A4V) are introduced into a pseudo wild-type background containing no free cysteine residues. The guanidinium chloride-induced denaturation of the holo proteins is generally found to be highly reversible (except for A4V, which tended to aggregate), enabling quantitative analysis of the effects of the mutations on protein stability. Denaturation and renaturation curves were monitored by tryptophan fluorescence, circular dichroism, enzyme activity, chemical cross-linking and analytical sedimentation, as a function of equilibration time and protein concentration. There is strong kinetic hysteresis, with curves requiring exceptionally long times (many days for pseudo wild-type) to reach equilibrium, and evidence for the formation of kinetic and equilibrium intermediate(s), which are more highly populated at lower protein concentrations. The effects of metal dissociation were included in the data fitting. The full protein concentration dependence is best described using a three-state model involving metallated native dimer, metallated monomeric intermediate and unfolded monomers with no bound metals; however, at high protein concentrations the unfolding approaches a two-state transition with metal binding to both the native dimers and unfolded monomers. We show that the E100G, G93A and G85R mutations decrease overall protein stability, largely by decreasing monomer stability with little effect on dimer dissociation. Comparison of the chemical denaturation data with ALS disease characteristics suggests that aggregation of some mutant hSOD may occur through increased population of partially folded states that are less stable than the monomeric intermediate and accessed from the destabilized holo protein. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:106 / 123
页数:18
相关论文
共 75 条
[1]  
ALBER T, 1989, ANNU REV BIOCHEM, V58, P765, DOI 10.1146/annurev.biochem.58.1.765
[2]   Superoxide dismutase folding/unfolding pathway: Role of the metal ions in modulating structural and dynamical features [J].
Assfalg, M ;
Banci, L ;
Bertini, I ;
Turano, P ;
Vasos, PR .
JOURNAL OF MOLECULAR BIOLOGY, 2003, 330 (01) :145-158
[3]   Solution structure of apo Cu,Zn superoxide dismutase: Role of metal ions in protein folding [J].
Banci, L ;
Bertini, I ;
Cramaro, F ;
Del Conte, R ;
Viezzoli, MS .
BIOCHEMISTRY, 2003, 42 (32) :9543-9553
[4]   Solution structure of reduced monomeric Q133M2 copper, zinc superoxide dismutase (SOD). Why is SOD a dimeric enzyme? [J].
Banci, L ;
Benedetto, M ;
Bertini, I ;
Del Conte, R ;
Piccioli, M ;
Viezzoli, MS .
BIOCHEMISTRY, 1998, 37 (34) :11780-11791
[5]   Structure and dynamics of copper-free SOD: The protein before binding copper [J].
Banci, L ;
Bertini, I ;
Cantini, F ;
D'Onofrio, M ;
Viezzoli, MS .
PROTEIN SCIENCE, 2002, 11 (10) :2479-2492
[6]  
Banci L, 2002, EUR J BIOCHEM, V269, P1905, DOI [10.1046/j.1432-1033.2002.02840.x, 10.1046/j.1432-1327.2002.02840.x]
[7]  
Bender HS, 2004, JCT COATINGSTECH, V1, P10
[8]  
BOND JM, 1991, FREE RADICAL RES COM, V12-3, P545
[9]   Evolutionary constraints for dimer formation in prokaryotic Cu,Zn superoxide dismutase [J].
Bordo, D ;
Matak, D ;
Djinovic-Carugo, K ;
Rosano, C ;
Pesce, A ;
Bolognesi, M ;
Stroppolo, ME ;
Falconi, M ;
Battistoni, A ;
Desideri, A .
JOURNAL OF MOLECULAR BIOLOGY, 1999, 285 (01) :283-296
[10]   CONSERVED PATTERNS IN THE CU,ZN SUPEROXIDE-DISMUTASE FAMILY [J].
BORDO, D ;
DJINOVIC, K ;
BOLOGNESI, M .
JOURNAL OF MOLECULAR BIOLOGY, 1994, 238 (03) :366-386