ABA-Hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs

被引:297
作者
Yoshida, T
Nishimura, N
Kitahata, N
Kuromori, T
Ito, T
Asami, T
Shinozaki, K
Hirayama, T [1 ]
机构
[1] Yokohama City Univ, Int Grad Sch Arts & Sci, Yokohama, Kanagawa 2300045, Japan
[2] RIKEN, Inst Phys & Chem Res, Tsukuba Inst, Tsukuba, Ibaraki 3050074, Japan
[3] RIKEN, Wako Inst, Lab Cellular Biochem, Wako, Saitama 3510198, Japan
[4] RIKEN, Yokohama Inst, Genom Sci Ctr, Plant Funct Genom Res Grp, Yokohama, Kanagawa 2300045, Japan
关键词
D O I
10.1104/pp.105.070128
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The phytohormone abscisic acid (ABA) regulates physiologically important developmental processes and stress responses. Previously, we reported on Arabidopsis (Arabidopsis thaliana) L. Heynh. ahg mutants, which are hypersensitive to ABA during germination and early growth. Among them, ABA-hypersensitive germination3 (ahg3) showed the strongest ABA hypersensitivity. In this study, we found that the AHG3 gene is identical to AtPP2CA, which encodes a protein phosphatase 2C (PP2C). Although AtPP2CA has been reported to be involved in the ABA response on the basis of results obtained by reverse-genetics approaches, its physiological relevance in the ABA response has not been clarified yet. We demonstrate in vitro and in vivo that the ahg3-1 missense mutation causes the loss of PP2C activity, providing concrete confirmation that this PP2C functions as a negative regulator in ABA signaling. Furthermore, we compared the effects of disruption mutations of eight structurally related PP2C genes of Arabidopsis, including ABI1, ABI2, HAB1, and HAB2, and found that the disruptant mutant of AHG3/AtPP2CA had the strongest ABA hypersensitivity during germination, but it did not display any significant phenotypes in adult plants. Northern-blot analysis clearly showed that AHG3/AtPP2CA is the most active among those PP2C genes in seeds. These results suggest that AHG3/AtPP2CA plays a major role among PP2Cs in the ABA response in seeds and that the functions of those PP2Cs overlap, but their unique tissue- or development-specific expression confers distinct and indispensable physiological functions in the ABA response.
引用
收藏
页码:115 / 126
页数:12
相关论文
共 56 条
[1]   Genome-wide Insertional mutagenesis of Arabidopsis thaliana [J].
Alonso, JM ;
Stepanova, AN ;
Leisse, TJ ;
Kim, CJ ;
Chen, HM ;
Shinn, P ;
Stevenson, DK ;
Zimmerman, J ;
Barajas, P ;
Cheuk, R ;
Gadrinab, C ;
Heller, C ;
Jeske, A ;
Koesema, E ;
Meyers, CC ;
Parker, H ;
Prednis, L ;
Ansari, Y ;
Choy, N ;
Deen, H ;
Geralt, M ;
Hazari, N ;
Hom, E ;
Karnes, M ;
Mulholland, C ;
Ndubaku, R ;
Schmidt, I ;
Guzman, P ;
Aguilar-Henonin, L ;
Schmid, M ;
Weigel, D ;
Carter, DE ;
Marchand, T ;
Risseeuw, E ;
Brogden, D ;
Zeko, A ;
Crosby, WL ;
Berry, CC ;
Ecker, JR .
SCIENCE, 2003, 301 (5633) :653-657
[2]   Analysis of the genome sequence of the flowering plant Arabidopsis thaliana [J].
Kaul, S ;
Koo, HL ;
Jenkins, J ;
Rizzo, M ;
Rooney, T ;
Tallon, LJ ;
Feldblyum, T ;
Nierman, W ;
Benito, MI ;
Lin, XY ;
Town, CD ;
Venter, JC ;
Fraser, CM ;
Tabata, S ;
Nakamura, Y ;
Kaneko, T ;
Sato, S ;
Asamizu, E ;
Kato, T ;
Kotani, H ;
Sasamoto, S ;
Ecker, JR ;
Theologis, A ;
Federspiel, NA ;
Palm, CJ ;
Osborne, BI ;
Shinn, P ;
Conway, AB ;
Vysotskaia, VS ;
Dewar, K ;
Conn, L ;
Lenz, CA ;
Kim, CJ ;
Hansen, NF ;
Liu, SX ;
Buehler, E ;
Altafi, H ;
Sakano, H ;
Dunn, P ;
Lam, B ;
Pham, PK ;
Chao, Q ;
Nguyen, M ;
Yu, GX ;
Chen, HM ;
Southwick, A ;
Lee, JM ;
Miranda, M ;
Toriumi, MJ ;
Davis, RW .
NATURE, 2000, 408 (6814) :796-815
[3]   COPPER ENZYMES IN ISOLATED CHLOROPLASTS - POLYPHENOLOXIDASE IN BETA-VULGARIS [J].
ARNON, DI .
PLANT PHYSIOLOGY, 1949, 24 (01) :1-15
[4]  
ASAMI T, 1999, J CHEM RES SYNOP, V11, P658
[5]  
Bertini I, 1996, J BIOL INORG CHEM, V1, P1
[6]   The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis [J].
Brady, SM ;
Sarkar, SF ;
Bonetta, D ;
McCourt, P .
PLANT JOURNAL, 2003, 34 (01) :67-75
[7]   Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA [J].
Chérel, I ;
Michard, E ;
Platet, N ;
Mouline, K ;
Alcon, C ;
Sentenac, H ;
Thibaud, JB .
PLANT CELL, 2002, 14 (05) :1133-1146
[8]   Floral dip:: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana [J].
Clough, SJ ;
Bent, AF .
PLANT JOURNAL, 1998, 16 (06) :735-743
[9]   A protein farnesyl transferase involved in abscisic acid signal transduction in Arabidopsis [J].
Cutler, S ;
Ghassemian, M ;
Bonetta, D ;
Cooney, S ;
McCourt, P .
SCIENCE, 1996, 273 (5279) :1239-1241
[10]   Abscisic acid signaling in seeds and seedlings [J].
Finkelstein, RR ;
Gampala, SSL ;
Rock, CD .
PLANT CELL, 2002, 14 :S15-S45