We compared three different anthraquinones, rhein (4,5-dihydroxy-anthraquinone-2-carboxylic acid), danthron (1,8-dihydroxy-anthraquinone) and chrysophanol (1,8-dihydroxy-3-methylanthraquinone), with respect to their toxicity and ability to induce apoptosis in primary cultures of rat hepatocytes. Rhein was the most effective in producing free radicals, and was the only one of the tested anthraquinones that could induce apoptosis. Addition of 50 mu M rhein to hepatocyte cultures led to depletion of intracellular reduced glutathione (GSH) and ATP and accumulation of lipid peroxidation products. The substances N,N'-diphenyl-p-phenylenediamine (DPPD), dithiothreitol (DTT), nifedipine and desferal all protected the hepatocytes, i.e. prevented viability loss and ATP depletion, and decreased the GSH depletion. Cultures exposed to rhein for 15 min and subsequently rinsed and incubated for 16 h under normal culture conditions (complete medium) exhibited apoptosis, as shown by DNA fragmentation, nuclear condensation and positive TUNEL reaction. Pretreatment with the antioxidant DPPD and the iron-chelator desferal gave complete protection against apoptosis. No signs of oxidative cell damage were detected when the cultures were exposed to danthron or chrysophanol. All three anthraquinones did, however, cause an immediate increase in the intracellular Ca2+ concentration. We conclude that rhein, which contains one carboxyl group, is a suitable substrate for one-electron-reducing enzymes and an effective redox cycler, which leads to the production of oxygen-derived free radicals that eventually induce apoptotic cell death.