Reactive species and early manifestation of insulin resistance in type 2 diabetes

被引:127
作者
Fridlyand, LE [1 ]
Philipson, LH [1 ]
机构
[1] Univ Chicago, Dept Med, Chicago, IL 60637 USA
关键词
adipocytes; insulin; lipids; mitochondria; muscle; oxidative stress;
D O I
10.1111/j.1463-1326.2005.00496.x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The early stages of type 2 diabetes mellitus are characterized by the development of insulin resistance (IRe) in muscle cells and adipocytes with the concomitant loss of beta-cell compensation. We have extensively reviewed the literature related to metabolic and signalling pathways of reactive oxygen species (ROS) in regard to the coordinated development of oxidative stress and IRe. We considered the hypothesis that oxidative stress leads to IRe in muscle cells and adipocytes, but found that the data are more consistent with the hypothesis that the cellular mechanisms that protect against oxidative stress per se are capable of creating an ROS-dependent insulin-resistant state. Furthermore, ROS-induced mitochondrial dysfunction can lead to disruptions of lipid metabolism, increasing the intracellular lipid content, and, in addition, contribute to lipid-dependent IRe in myocytes. Together, these two ROS-activated pathways to IRe can contribute to a global state of profound resistance to insulin action. Therapeutic strategies should, therefore, be directed towards reducing insulin resistance without an increase in ROS production or concentration. Pharmacological or other approaches to IRe that result in the activation of mitochondrial biogenesis in particular could be highly beneficial in the prevention or treatment of both insulin resistance and type 2 diabetes.
引用
收藏
页码:136 / 145
页数:10
相关论文
共 71 条
[1]   Plasticity of skeletal muscle mitochondria in response to contractile activity [J].
Adhihetty, PJ ;
Irrcher, I ;
Joseph, AM ;
Ljubicic, V ;
Hood, DA .
EXPERIMENTAL PHYSIOLOGY, 2003, 88 (01) :99-107
[2]   Metabolic and molecular basis of insulin resistance [J].
Bajaj, M ;
DeFronzo, RA .
JOURNAL OF NUCLEAR CARDIOLOGY, 2003, 10 (03) :311-323
[3]   Novel concepts in insulin regulation of hepatic gluconeogenesis [J].
Barthel, A ;
Schmoll, D .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2003, 285 (04) :E685-E692
[4]   Diabetes mellitus and genetically programmed defects in β-cell function [J].
Bell, GI ;
Polonsky, KS .
NATURE, 2001, 414 (6865) :788-791
[5]   Turning down insulin signaling [J].
Birnbaum, MJ .
JOURNAL OF CLINICAL INVESTIGATION, 2001, 108 (05) :655-659
[6]   Regulation of glucose transport and glycogen synthesis in L6 muscle cells during oxidative stress - Evidence for cross-talk between the insulin and SAPK2/p38 mitogen-activated protein kinase signaling pathways [J].
Blair, AS ;
Hajduch, E ;
Litherland, GJ ;
Hundal, HS .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (51) :36293-36299
[7]   MECHANISMS OF FATTY ACID-INDUCED INHIBITION OF GLUCOSE-UPTAKE [J].
BODEN, G ;
CHEN, XH ;
RUIZ, J ;
WHITE, JV ;
ROSSETTI, L .
JOURNAL OF CLINICAL INVESTIGATION, 1994, 93 (06) :2438-2446
[8]   Free fatty acids in obesity and type 2 diabetes:: defining their role in the development of insulin resistance and β-cell dysfunction [J].
Boden, G ;
Shulman, GI .
EUROPEAN JOURNAL OF CLINICAL INVESTIGATION, 2002, 32 :14-23
[9]   Intramuscular heat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes - Evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism [J].
Bruce, CR ;
Carey, AL ;
Hawley, JA ;
Febbraio, MA .
DIABETES, 2003, 52 (09) :2338-2345
[10]   β-cell deficit and increased β-cell apoptosis in humans with type 2 diabetes [J].
Butler, AE ;
Janson, J ;
Bonner-Weir, S ;
Ritzel, R ;
Rizza, RA ;
Butler, PC .
DIABETES, 2003, 52 (01) :102-110