Variability of the 15N chemical shielding tensors in the B3 domain of protein G from 15N relaxation measurements at several fields.: Implications for backbone order parameters

被引:81
作者
Hall, Jennifer B. [1 ]
Fushman, David [1 ]
机构
[1] Univ Maryland, Ctr Biomol Struct & Org, Dept Chem & Biochem, College Pk, MD 20742 USA
关键词
D O I
10.1021/ja060406x
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We applied a combination of N-15 relaxation and CSA/dipolar cross-correlation measurements at five magnetic fields (9.4, 11.7, 14.1, 16.4, and 18.8 T) to determine the 15N chemical shielding tensors for backbone amides in protein G in solution. The data were analyzed using various model-independent approaches and those based on Lipari-Szabo approximation, all of them yielding similar results. The results indicate a range of site-specific values of the anisotropy (CSA) and orientation of the 15N chemical shielding tensor, similar to those in ubiquitin (Fushman, et al. J. Am. Chem. Soc. 1998, 120, 10947; J. Am. Chem. Soc. 1999, 121, 8577). Assuming a Gaussian distribution of the 15N CSA values, the mean anisotropy is -173.9 to -177.2 ppm (for 1.02 angstrom NH bond length) and the site-to-site CSA variability is +/- 17.6 to +/- 21.4 ppm, depending on the method used. This CSA variability is significantly larger than derived previously for ribonuclease H (Kroenke, et al. J. Am. Chem. Soc. 1999, 121, 10119) or recently, using "meta-analysis" for ubiquitin (Damberg, et al. J. Am. Chem. Soc. 2005, 127, 1995). Standard interpretation of N-15 relaxation studies of backbone dynamics in proteins involves an a priori assumption of a uniform 15N CSA. We show that this assumption leads to a significant discrepancy between the order parameters obtained at different fields. Using the site-specific CSAs obtained from our study removes this discrepancy and allows simultaneous fit of relaxation data at all five fields to Lipari-Szabo spectral densities. These findings emphasize the necessity of taking into account the variability of N-15 CSA for accurate analysis of protein dynamics from N-15 relaxation measurements.
引用
收藏
页码:7855 / 7870
页数:16
相关论文
共 69 条
[1]  
[Anonymous], 1998, Applied regression analysis, DOI 10.1002/9781118625590
[2]   Identification of slow correlated motions in proteins using residual dipolar and hydrogen-bond scalar couplings [J].
Bouvignies, G ;
Bernadó, P ;
Meier, S ;
Cho, K ;
Grzesiek, S ;
Brüschweiler, R ;
Blackledge, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (39) :13885-13890
[3]   Characterization of 15N chemical shift anisotropy from orientation-dependent changes to 15N chemical shifts in dilute bicelle solutions [J].
Boyd, J ;
Redfield, C .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1999, 121 (32) :7441-7442
[4]   Locally anisotropic internal polypeptide backbone dynamics by NMR relaxation [J].
Bremi, T ;
Bruschweiler, R .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1997, 119 (28) :6672-6673
[5]  
Canet D, 1998, CONCEPT MAGNETIC RES, V10, P291, DOI 10.1002/(SICI)1099-0534(1998)10:5<291::AID-CMR2>3.3.CO
[6]  
2-E
[7]   DEVIATIONS FROM THE SIMPLE 2-PARAMETER MODEL-FREE APPROACH TO THE INTERPRETATION OF N-15 NUCLEAR MAGNETIC-RELAXATION OF PROTEINS [J].
CLORE, GM ;
SZABO, A ;
BAX, A ;
KAY, LE ;
DRISCOLL, PC ;
GRONENBORN, AM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1990, 112 (12) :4989-4991
[8]   Measurement of proton, nitrogen, and carbonyl chemical shielding anisotropies in a protein dissolved in a dilute liquid crystalline phase [J].
Cornilescu, G ;
Bax, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (41) :10143-10154
[9]   Protein backbone angle restraints from searching a database for chemical shift and sequence homology [J].
Cornilescu, G ;
Delaglio, F ;
Bax, A .
JOURNAL OF BIOMOLECULAR NMR, 1999, 13 (03) :289-302
[10]   Validation of protein structure from anisotropic carbonyl chemical shifts in a dilute liquid crystalline phase [J].
Cornilescu, G ;
Marquardt, JL ;
Ottiger, M ;
Bax, A .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1998, 120 (27) :6836-6837