Codeposition of deuterium with ITER materials

被引:59
作者
Doerner, R. P. [1 ]
Baldwin, M. J. [1 ]
De Temmerman, G. [2 ]
Hanna, J. [1 ]
Nishijima, D. [1 ]
Roth, J. [3 ]
Schmid, K. [3 ]
Tynan, G. R. [1 ]
Umstadter, K. [1 ]
机构
[1] Univ Calif San Diego, La Jolla, CA 92093 USA
[2] EURATOM, UKAEA Fus Assoc, Abingdon, Oxon, England
[3] EURATOM, Max Planck Inst Plasmaphys, D-85748 Garching, Germany
基金
英国工程与自然科学研究理事会;
关键词
HYDROCARBON FILMS; DIVERTOR TILES; DEPOSITION; PLASMA; RETENTION; BERYLLIUM; EROSION; CARBON; WALL;
D O I
10.1088/0029-5515/49/3/035002
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The levels of retention in codeposited layers of each of the three ITER materials (C, Be and W) are compared. Scaling laws, based on the conditions during the codeposition process (surface temperature, incident particle energy and ratio of the depositing fluxes), are presented to allow prediction of expected retention under ITER conditions. Retention in carbon codeposits scales inversely with incident particle energy, whereas in the metallic codeposits the retention level scales proportionally to increasing particle energy. The differing scaling of retention with incident particle energy provides insights into which material may impact the global retention in ITER depending on where it may form codeposits. In addition to the amount of retention, the release behaviour of tritium from codeposits will influence the tritium accumulation rate within ITER. The thermal release behaviour of T (or D) from codeposits can be used to evaluate the effectiveness of baking at different temperatures as a means of tritium removal. Finally, the desorption kinetics from Be and W codeposits are contrasted. In the case of W codeposits, the duration of the baking cycle is important in determining the removal efficiency, whereas with Be codeposited layers, the maximum achievable bake temperature plays the leading role in determining removal efficiency.
引用
收藏
页数:6
相关论文
共 25 条
  • [1] Alimov VK, 2004, PHYS SCRIPTA, VT108, P46
  • [2] Composition and hydrogen isotope retention analysis of co-deposited C/Be layers
    Baldwin, MJ
    Schmid, K
    Doerner, RP
    Wiltner, A
    Seraydarian, R
    Linsmeier, C
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2005, 337 (1-3) : 590 - 594
  • [3] Material erosion at the vessel walls of future fusion devices
    Behrisch, R
    Federici, G
    Kukushkin, A
    Reiter, D
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2003, 313 : 388 - 392
  • [4] BROOKS JN, 2009, 22 IAEA FUS EN UNPUB
  • [5] COMPARISON OF THE THERMAL-STABILITY OF THE CODEPOSITED CARBON HYDROGEN LAYER TO THAT OF THE SATURATED IMPLANT LAYER
    CAUSEY, RA
    WAMPLER, WR
    WALSH, D
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1990, 176 : 987 - 991
  • [6] Codeposition of deuterium with beryllium
    Causey, RA
    Walsh, DS
    [J]. JOURNAL OF NUCLEAR MATERIALS, 1998, 254 (01) : 84 - 86
  • [7] Beryllium deposition on International Thermonuclear Experimental Reactor first mirrors: Layer morphology and influence on mirror reflectivity
    De Temmerman, G.
    Baldwin, M. J.
    Doerner, R. P.
    Nishijima, D.
    Seraydarian, R.
    Schmid, K.
    Kost, F.
    Linsmeier, Ch.
    Marot, L.
    [J]. JOURNAL OF APPLIED PHYSICS, 2007, 102 (08)
  • [8] An empirical scaling for deuterium retention in co-deposited beryllium layers
    De Temmerman, G.
    Baldwin, M. J.
    Doerner, R. P.
    Nishijima, D.
    Schmid, K.
    [J]. NUCLEAR FUSION, 2008, 48 (07)
  • [9] DETEMMERMAN G, 2009, J NUCL MAT IN PRESS
  • [10] DETEMMERMAN G, 2009, J NUCL MAT UNPUB