Independent component analysis: an introduction

被引:263
作者
Stone, JV [1 ]
机构
[1] Univ Sheffield, Dept Psychol, Sheffield S10 2TP, S Yorkshire, England
关键词
D O I
10.1016/S1364-6613(00)01813-1
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Independent component analysis (ICA) is a method for automatically identifying the underlying factors in a given data set. This rapidly evolving technique is currently finding applications in analysis of biomedical signals (e.g. ERP, EEG, fMRI, optical imaging), and in models of visual receptive fields and separation of speech signals. This article illustrates these applications, and provides an informal introduction to ICA.
引用
收藏
页码:59 / 64
页数:6
相关论文
共 9 条
[1]   Unsupervised Learning [J].
Barlow, H. B. .
NEURAL COMPUTATION, 1989, 1 (03) :295-311
[2]   AN INFORMATION MAXIMIZATION APPROACH TO BLIND SEPARATION AND BLIND DECONVOLUTION [J].
BELL, AJ ;
SEJNOWSKI, TJ .
NEURAL COMPUTATION, 1995, 7 (06) :1129-1159
[3]   Independent component analysis at the neural cocktail party [J].
Brown, GD ;
Yamada, S ;
Sejnowski, TJ .
TRENDS IN NEUROSCIENCES, 2001, 24 (01) :54-63
[4]   Modes or models: a critique on independent component analysis for fMRI [J].
Friston, KJ .
TRENDS IN COGNITIVE SCIENCES, 1998, 2 (10) :373-375
[5]   Topographic independent component analysis [J].
Hyvärinen, A ;
Hoyer, PO ;
Inki, M .
NEURAL COMPUTATION, 2001, 13 (07) :1527-1558
[6]   Complexity pursuit:: Separating interesting components from time series [J].
Hyvärinen, A .
NEURAL COMPUTATION, 2001, 13 (04) :883-898
[7]   Blind separation of auditory event-related brain responses into independent components [J].
Makeig, S ;
Jung, TP ;
Bell, AJ ;
Ghahremani, D ;
Sejnowski, TJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (20) :10979-10984
[8]   Spatially independent activity patterns in functional MRI data during the Stroop color-naming task [J].
McKeown, MJ ;
Jung, TP ;
Makeig, S ;
Brown, G ;
Kindermann, SS ;
Lee, TW ;
Sejnowski, TJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1998, 95 (03) :803-810
[9]   Blind source separation using temporal predictability [J].
Stone, JV .
NEURAL COMPUTATION, 2001, 13 (07) :1559-1574