Some experiments on independent component analysis of non-Gaussian processes.

被引:5
作者
Cardoso, JF [1 ]
Donoho, DL [1 ]
机构
[1] CNRS, Paris, France
来源
PROCEEDINGS OF THE IEEE SIGNAL PROCESSING WORKSHOP ON HIGHER-ORDER STATISTICS | 1999年
关键词
D O I
10.1109/HOST.1999.778697
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper reports on numerical experiments an the 'independent component analysis' (ICA) of some non-Gaussian stochastic processes. It is found that the orthonormal basis discovered by ICA are strikingly close to wavelet basis.
引用
收藏
页码:74 / 77
页数:4
相关论文
共 9 条
[1]  
BELL AJ, 1996, ADV NEURAL INFORMATI, V9
[2]  
BUCKHEIT JB, 1996, IEEE TIME FREQUENCY
[3]   Blind signal separation: Statistical principles [J].
Cardoso, JF .
PROCEEDINGS OF THE IEEE, 1998, 86 (10) :2009-2025
[4]   High-order contrasts for independent component analysis [J].
Cardoso, JF .
NEURAL COMPUTATION, 1999, 11 (01) :157-192
[5]   ENTROPY-BASED ALGORITHMS FOR BEST BASIS SELECTION [J].
COIFMAN, RR ;
WICKERHAUSER, MV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (02) :713-718
[6]   INDEPENDENT COMPONENT ANALYSIS, A NEW CONCEPT [J].
COMON, P .
SIGNAL PROCESSING, 1994, 36 (03) :287-314
[7]  
DONOHO DL, UNPUB INDEPENDENT CO
[8]  
MEYER Y, 1992, CIRM LUM M LUM FRANC
[9]   Emergence of simple-cell receptive field properties by learning a sparse code for natural images [J].
Olshausen, BA ;
Field, DJ .
NATURE, 1996, 381 (6583) :607-609