PAS domain-mediated WC-1/WC-2 interaction is essential for maintaining the steady-state level of WC-1 and the function of both proteins in circadian clock and light responses of Neurospora

被引:132
作者
Cheng, P
Yang, YH
Gardner, KH
Liu, Y
机构
[1] Univ Texas, SW Med Ctr, Dept Physiol, Dallas, TX 75390 USA
[2] Univ Texas, SW Med Ctr, Dept Biochem, Dallas, TX 75390 USA
关键词
D O I
10.1128/MCB.22.2.517-524.2002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
In the frq-we-based circadian feedback loops of Neurospora, two PAS domain-containing transcription factors, WHITE COLLAR-1 (WC-1) and WC-2, form heterodimeric complexes that activate the transcription of frequency (frq). FRQ serves two roles in these feedback loops: repressing its own transcription by interacting with the WC complex and positively upregulating the levels of WC-1 and WC-2 proteins. We report here that the steady-state level of WC-1 protein is independently regulated by both FRQ and WC-2 through different posttranscriptional mechanisms. The WC-1 level is extremely low in wc-2 knockout strains, and this low level of expression is independent of wc-1 transcription and FRQ protein expression. In addition, our data show that the PAS domain of WC-2 mediates the interactions of this protein with both WC-1 and FRQ in vivo. Such interactions are essential for maintaining the steady-state level of WC-1 and the proper function of WC-1 and WC-2 in circadian clock and light responses.
引用
收藏
页码:517 / 524
页数:8
相关论文
共 49 条
[1]   A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless [J].
Allada, R ;
White, NE ;
So, WV ;
Hall, JC ;
Rosbash, M .
CELL, 1998, 93 (05) :791-804
[2]   CIRCADIAN CLOCK LOCUS FREQUENCY - PROTEIN ENCODED BY A SINGLE OPEN READING FRAME DEFINES PERIOD LENGTH AND TEMPERATURE COMPENSATION [J].
ARONSON, BD ;
JOHNSON, KA ;
DUNLAP, JC .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (16) :7683-7687
[3]   NEGATIVE FEEDBACK DEFINING A CIRCADIAN CLOCK - AUTOREGULATION OF THE CLOCK GENE-FREQUENCY [J].
ARONSON, BD ;
JOHNSON, KA ;
LOROS, JJ ;
DUNLAP, JC .
SCIENCE, 1994, 263 (5153) :1578-1584
[4]   Roles in dimerization and blue light photoresponse of the PAS and LOV domains of Neurospora crassa white collar proteins [J].
Ballario, P ;
Talora, C ;
Galli, D ;
Linden, H ;
Macino, G .
MOLECULAR MICROBIOLOGY, 1998, 29 (03) :719-729
[5]   White collar-1, a central regulator of blue light responses in Neurospora, is a zinc finger protein [J].
Ballario, P ;
Vittorioso, P ;
Magrelli, A ;
Talora, C ;
Cabibbo, A ;
Macino, G .
EMBO JOURNAL, 1996, 15 (07) :1650-1657
[6]  
BellPedersen D, 1996, MOL CELL BIOL, V16, P513
[7]   Crystal structure and functional analysis of the HERG potassium channel N terminus: A eukaryotic PAS domain [J].
Cabral, JHM ;
Lee, A ;
Cohen, SL ;
Chait, BT ;
Li, M ;
Mackinnon, R .
CELL, 1998, 95 (05) :649-655
[8]   Interlocked feedback loops contribute to the robustness of the Neurospora circadian clock [J].
Cheng, P ;
Yang, YH ;
Liu, Y .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (13) :7408-7413
[9]   Coiled-coil domain-mediated FRQ-FRQ interaction is essential for its circadian clock function in Neurospora [J].
Cheng, P ;
Yang, YH ;
Heintzen, C ;
Liu, Y .
EMBO JOURNAL, 2001, 20 (1-2) :101-108
[10]   Circadian clock-specific roles for the light response protein WHITE COLLAR-2 [J].
Collett, MA ;
Dunlap, JC ;
Loros, JJ .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (08) :2619-2628