Structural models of the KtrB, TrkH, and Trk1,2 symporters based on the structure of the KcsA K+ channel

被引:141
作者
Durell, SR [1 ]
Guy, HR [1 ]
机构
[1] NCI, Lab Expt & Computat Biol, Div Basic Sci, NIH, Bethesda, MD 20892 USA
关键词
D O I
10.1016/S0006-3495(99)76932-8
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Three-dimensional computer modeling is used to further investigate the hypothesis forwarded in the accompanying paper of an evolutionary relationship between four related families of K+ sympoter proteins and the superfamily of K+ channel proteins. Atomic-scale models are developed for the transmembrane regions of one member from each of the three more distinct symporter families, i.e., a TrkH protein from Escherichia coli, a KtrB protein from Aquifex aeolicus, and a Trk1,2 protein from Schizosaccharomyces pombe. The portions of the four consecutive M1-P-M2 motifs in the symporters that can be aligned with K+ channel sequences are modeled directly from the recently determined crystal structure of the KcsA K+ channel from Streptomyces lividans. The remaining portions are developed using our previously accumulated theoretical modeling criteria and principles. Concurrently, the use of these criteria and principles is further supported by the now verified predictions of our previous K+ channel modeling efforts and the degree to which they are satisfied by the known structure of the KcsA protein. Thus the observed ability of the portions of the symporter models derived from the KcsA crystal structure to also satisfy the theoretical modeling criteria provides additional support for an evolutionary link with K+ channel proteins. Efforts to further satisfy the criteria and principles suggest that the symporter proteins from fungi and plants (i.e., Trk1,2 and HKT1) form dimeric and/or tetrameric complexes in the membrane. Furthermore, analysis of the atomic-scale models in relation to the sequence conservation within and between the protein families suggests structural details for previously proposed mechanisms for the linked symport of K+ with Na+ and H+. Suggestions are also given for experiments to test these structures and hypotheses.
引用
收藏
页码:789 / 807
页数:19
相关论文
共 43 条
[1]   Helix packing in membrane proteins [J].
Bowie, JU .
JOURNAL OF MOLECULAR BIOLOGY, 1997, 272 (05) :780-789
[2]   CHARMM - A PROGRAM FOR MACROMOLECULAR ENERGY, MINIMIZATION, AND DYNAMICS CALCULATIONS [J].
BROOKS, BR ;
BRUCCOLERI, RE ;
OLAFSON, BD ;
STATES, DJ ;
SWAMINATHAN, S ;
KARPLUS, M .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 1983, 4 (02) :187-217
[3]   HELIX TO HELIX PACKING IN PROTEINS [J].
CHOTHIA, C ;
LEVITT, M ;
RICHARDSON, D .
JOURNAL OF MOLECULAR BIOLOGY, 1981, 145 (01) :215-250
[4]   PREDICTION OF PROTEIN CONFORMATION [J].
CHOU, PY ;
FASMAN, GD .
BIOCHEMISTRY, 1974, 13 (02) :222-245
[5]   The first genome from the third domain of life [J].
Clayton, RA ;
White, O ;
Ketchum, KA ;
Venter, JC .
NATURE, 1997, 387 (6632) :459-462
[6]   THE PACKING OF ALPHA-HELICES - SIMPLE COILED-COILS [J].
CRICK, FHC .
ACTA CRYSTALLOGRAPHICA, 1953, 6 (8-9) :689-697
[7]   The complete genome of the hyperthermophilic bacterium Aquifex aeolicus [J].
Deckert, G ;
Warren, PV ;
Gaasterland, T ;
Young, WG ;
Lenox, AL ;
Graham, DE ;
Overbeek, R ;
Snead, MA ;
Keller, M ;
Aujay, M ;
Huber, R ;
Feldman, RA ;
Short, JM ;
Olsen, GJ ;
Swanson, RV .
NATURE, 1998, 392 (6674) :353-358
[8]   Site directed mutagenesis reduces the Na+ affinity of HKT1, an Na+ energized high affinity K+ transporter [J].
Diatloff, E ;
Kumar, R ;
Schachtman, DP .
FEBS LETTERS, 1998, 432 (1-2) :31-36
[9]   The structure of the potassium channel:: Molecular basis of K+ conduction and selectivity [J].
Doyle, DA ;
Cabral, JM ;
Pfuetzner, RA ;
Kuo, AL ;
Gulbis, JM ;
Cohen, SL ;
Chait, BT ;
MacKinnon, R .
SCIENCE, 1998, 280 (5360) :69-77
[10]   Evolutionary relationship between K+ channels and symporters [J].
Durell, SR ;
Hao, YL ;
Nakamura, T ;
Bakker, EP ;
Guy, HR .
BIOPHYSICAL JOURNAL, 1999, 77 (02) :775-788