Electroporation-induced formation of individual calcium entry sites in the cell body and processes of adherent cells

被引:87
作者
Teruel, MN [1 ]
Meyer, T [1 ]
机构
[1] DUKE UNIV, MED CTR, DEPT CELL BIOL, DURHAM, NC 27710 USA
关键词
D O I
10.1016/S0006-3495(97)78209-2
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Electroporation is a widely used method for introducing macromolecules into cells. We developed an electroporation device that requires only 1 mu l of sample to load adherent cells in a 10-mm(2) surface area while retaining greater than 90% cell survivability. To better understand this device, field-induced permeabilization of adherent rat basophilic leukemia and neocortical neuroblastoma cells was investigated by using fluorescent calcium and voltage indicators. Rectangular field pulses led to the formation of only a few calcium entry sites, preferentially in the hyperpolarized parts of the cell body and processes. Individual entry sites were formed at the same locations when field pulses were repeated. Before calcium entry, a partial breakdown of the membrane potential was observed in both polar regions. Based on our results, a model is proposed for the formation and closure of macromolecule entry sites in adherent cells. First, the rapid formation of a large number of small pores leads to a partial membrane potential breakdown in both polar regions of the cell. Second, over tens of milliseconds, a few entry sites for macromolecules are formed, preferentially in the hyperpolarized part of cell body and processes, at locations defined by the local membrane structure. These entry sites reseal on a time scale of 50 ms to several seconds, with residual small pores remaining open for several minutes.
引用
收藏
页码:1785 / 1796
页数:12
相关论文
共 41 条
[1]  
BAUM C, 1994, BIOTECHNIQUES, V17, P1058
[2]   INTERCELLULAR PROPAGATION OF CALCIUM WAVES MEDIATED BY INOSITOL TRISPHOSPHATE [J].
BOITANO, S ;
DIRKSEN, ER ;
SANDERSON, MJ .
SCIENCE, 1992, 258 (5080) :292-295
[3]  
Chang D.C., 1992, GUIDE ELECTROPORATIO
[4]   CELL PORATION AND CELL-FUSION USING AN OSCILLATING ELECTRIC-FIELD [J].
CHANG, DC .
BIOPHYSICAL JOURNAL, 1989, 56 (04) :641-652
[5]   CHANGES IN MEMBRANE-STRUCTURE INDUCED BY ELECTROPORATION AS REVEALED BY RAPID-FREEZING ELECTRON-MICROSCOPY [J].
CHANG, DC ;
REESE, TS .
BIOPHYSICAL JOURNAL, 1990, 58 (01) :1-12
[6]   Clonal cell lines produced by infection of neocortical neuroblasts using multiple oncogenes transduced by retroviruses [J].
Chun, J ;
Jaenisch, R .
MOLECULAR AND CELLULAR NEUROSCIENCE, 1996, 7 (04) :304-321
[7]   MEMBRANE ELECTROPORATION - FAST MOLECULAR-EXCHANGE BY ELECTROOSMOSIS [J].
DIMITROV, DS ;
SOWERS, AE .
BIOCHIMICA ET BIOPHYSICA ACTA, 1990, 1022 (03) :381-392
[8]   Effect of medium conductivity and composition on the uptake of propidium iodide into electropermeabilized myeloma cells [J].
Djuzenova, CS ;
Zimmermann, U ;
Frank, H ;
Sukhorukov, VL ;
Richter, E ;
Fuhr, G .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES, 1996, 1284 (02) :143-152
[9]   THEORY OF ELECTROPORATION OF PLANAR BILAYER-MEMBRANES - PREDICTIONS OF THE AQUEOUS AREA, CHANGE IN CAPACITANCE, AND PORE-PORE SEPARATION [J].
FREEMAN, SA ;
WANG, MA ;
WEAVER, JC .
BIOPHYSICAL JOURNAL, 1994, 67 (01) :42-56
[10]   OPTICAL IMAGING OF CELL-MEMBRANE POTENTIAL CHANGES INDUCED BY APPLIED ELECTRIC-FIELDS [J].
GROSS, D ;
LOEW, LM ;
WEBB, WW .
BIOPHYSICAL JOURNAL, 1986, 50 (02) :339-348