Negative dip in BOLD fMRI is caused by blood flow -: Oxygen consumption uncoupling in humans

被引:72
作者
Rother, J
Knab, R
Hamzei, F
Fiehler, J
Reichenbach, JR
Büchel, C
Weiller, C
机构
[1] Univ Hamburg, Hosp Eppendorf, Dept Neurol, D-20246 Hamburg, Germany
[2] Univ Jena, Inst Diagnost & Intervent Radiol, D-6900 Jena, Germany
关键词
functional magnetic resonance imaging; blood oxygen level-dependent (BOLD) effect; cerebral blood oxygen saturation; cerebral autoregulation; cerebrovascular reserve capacity;
D O I
10.1006/nimg.2001.0965
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The sensitivity of MRI for local changes in the deoxyhemoglobin concentration is the basis of the blood oxygen level dependent (BOLD) effect. Time-resolved fMRI studies during visual activation show an early signal intensity (SI) decrease indicating a short lasting uncoupling of oxygen consumption and cerebral blood flow (CBF) before a SI increase due to the overcompensating hemodynamic response occurs. Normal neuronal activity may be preserved despite absent vascular responsiveness. Here we show that a negative BOLD effect occurs during motor activation in an asymptomatic patient with severely disturbed cerebral autoregulation due to extracranial artery disease. This is thought to be due to oxygen consumption in the absence of a hemodynamic response. This rare case of a persisting uncoupling of oxygen metabolism and CBF serves as a model that supports changes of the cerebral blood oxygen saturation as the major contributor of the BOLD effect. (C) 2002 Elsevier Science.
引用
收藏
页码:98 / 102
页数:5
相关论文
共 27 条
[1]   THE EFFECT OF ACETAZOLAMIDE ON REGIONAL CEREBRAL BLOOD OXYGENATION AT REST AND UNDER STIMULATION AS ASSESSED BY MRI [J].
BRUHN, H ;
KLEINSCHMIDT, A ;
BOECKER, H ;
MERBOLDT, KD ;
HANICKE, W ;
FRAHM, J .
JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM, 1994, 14 (05) :742-748
[2]   Dynamics of blood flow and oxygenation changes during brain activation: The balloon model [J].
Buxton, RB ;
Wong, EC ;
Frank, LR .
MAGNETIC RESONANCE IN MEDICINE, 1998, 39 (06) :855-864
[3]   OBSERVATION OF A FAST-RESPONSE IN FUNCTIONAL MR [J].
ERNST, T ;
HENNIG, J .
MAGNETIC RESONANCE IN MEDICINE, 1994, 32 (01) :146-149
[4]   FOCAL PHYSIOLOGICAL UNCOUPLING OF CEREBRAL BLOOD-FLOW AND OXIDATIVE-METABOLISM DURING SOMATOSENSORY STIMULATION IN HUMAN-SUBJECTS [J].
FOX, PT ;
RAICHLE, ME .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1986, 83 (04) :1140-1144
[5]   Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man [J].
Frahm, J ;
Kruger, G ;
Merboldt, KD ;
Kleinschmidt, A .
MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (02) :143-148
[6]   BRAIN OR VEIN-OXYGENATION OR FLOW - ON SIGNAL PHYSIOLOGY IN FUNCTIONAL MRI OF HUMAN BRAIN ACTIVATION [J].
FRAHM, J ;
MERBOLDT, KD ;
HANICKE, W ;
KLEINSCHMIDT, A ;
BOECKER, H .
NMR IN BIOMEDICINE, 1994, 7 (1-2) :45-53
[7]  
Friston K., 1995, HUMAN BRAIN MAPPING, V2, P189, DOI [DOI 10.1002/HBM.460020402, 10.1002/hbm.460020402]
[8]   CORTICAL FUNCTIONAL ARCHITECTURE AND LOCAL COUPLING BETWEEN NEURONAL-ACTIVITY AND THE MICROCIRCULATION REVEALED BY INVIVO HIGH-RESOLUTION OPTICAL IMAGING OF INTRINSIC SIGNALS [J].
FROSTIG, RD ;
LIEKE, EE ;
TSO, DY ;
GRINVALD, A .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1990, 87 (16) :6082-6086
[9]   EFFECTS OF CHANGES IN PACO2 ON CEREBRAL BLOOD VOLUME, BLOOD FLOW, AND VASCULAR MEAN TRANSIT TIME [J].
GRUBB, RL ;
RAICHLE, ME ;
EICHLING, JO ;
TERPOGOS.MM .
STROKE, 1974, 5 (05) :630-639
[10]   Evaluation of the early response in fMRI in individual subjects using short stimulus duration [J].
Hu, XP ;
Le, TH ;
Ugurbil, K .
MAGNETIC RESONANCE IN MEDICINE, 1997, 37 (06) :877-884