Identification and prediction of discrete chaotic maps applying a Chebyshev neural network

被引:24
作者
Akritas, P
Antoniou, I
Ivanov, VV
机构
[1] Int Solvay Inst Phys & Chem, B-1050 Brussels, Belgium
[2] Free Univ Brussels, Brussels, Belgium
[3] Joint Inst Nucl Res, Lab Comp Tech & Automat, Dubna 141980, Russia
关键词
Approximation theory - Feedforward neural networks - Learning systems - Multilayer neural networks - Polynomials;
D O I
10.1016/S0960-0779(98)00302-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new approach to reconstructing and predicting discrete chaotic maps is developed. It is based on the feed-forward neural network which decomposes the analyzed chaotic map in orthogonal Chebyshev polynomials. We show that the Chebyshev neural network (CNN) significantly exceeds the traditional multi-layer perceptron (MLP) in learning rate and in the accuracy of approximating an unknown map. (C) 1999 Elsevier Science Lid, All rights reserved.
引用
收藏
页码:337 / 344
页数:8
相关论文
共 13 条
  • [1] ANTONIOU I, 1997, NONLINEAR WORLD, V4, P135
  • [2] A method for approximating one-dimensional functions
    Basios, V
    Bonushkina, AY
    Ivanov, VV
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 34 (7-8) : 687 - 693
  • [3] Berezin I.S., 1959, COMPUTING METHODS
  • [4] DENBY B, 1992, P 2 INT WORKSH SOFTW, P287
  • [5] IVANOV VV, 1995, NEW COMPUTING TECHNI, V4, P765
  • [6] Jackson E. A., 1989, Perspectives of Nonlinear Dynamics, V1
  • [7] JONES RD, 1990, FUNCTION APPROXIMATI, P90
  • [8] LAPEDES A, 1987, 872662 LAUR
  • [9] Lasota A., 1994, Applied Mathematical Sciences, V2nd
  • [10] PATTERN-RECOGNITION IN HIGH-ENERGY PHYSICS WITH ARTIFICIAL NEURAL NETWORKS - JETNET-2.0
    LONNBLAD, L
    PETERSON, C
    ROGNVALDSSON, T
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1992, 70 (01) : 167 - 182