Global asymptotic stability in a nonautonomous Lotka-Volterra type system with infinite delay

被引:76
作者
Bereketoglu, H [1 ]
Gyori, I [1 ]
机构
[1] UNIV VESZPREM,DEPT MATH & COMP,H-8201 VESZPREM,HUNGARY
关键词
D O I
10.1006/jmaa.1997.5403
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:279 / 291
页数:13
相关论文
共 11 条
[1]   PERIODIC-SOLUTIONS OF SINGLE-SPECIES MODELS WITH PERIODIC DELAY [J].
FREEDMAN, HI ;
WU, JH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (03) :689-701
[2]   GLOBAL STABILITY IN MANY-SPECIES SYSTEMS [J].
GOH, BS .
AMERICAN NATURALIST, 1977, 111 (977) :135-143
[3]   GLOBAL ASYMPTOTIC STABILITY IN VOLTERRA POPULATION SYSTEMS [J].
GOPALSAMY, K .
JOURNAL OF MATHEMATICAL BIOLOGY, 1984, 19 (02) :157-168
[4]  
Gopalsamy K., 2013, Stability and Oscillations in Delay Differential Equations of Population Dynamics, V74
[5]   GLOBAL STABILITY FOR INFINITE DELAY LOTKA-VOLTERRA TYPE SYSTEMS [J].
KUANG, Y ;
SMITH, HL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 103 (02) :221-246
[6]  
Kuang Y, 1993, Mathematics in Science and Engineering
[7]  
KUANG Y, 1996, DIFFERENTIAL INTEGRA, V9, P557
[8]   GLOBAL STABILITY FOR LARGE SYSTEMS OF VOLTERRA-LOTKA TYPE INTEGRODIFFERENTIAL POPULATION DELAY EQUATIONS [J].
LEUNG, AW ;
ZHOU, ZM .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (05) :495-505
[9]  
POST WM, 1982, LECT NOTES PURE APPL, V67, P241
[10]   ON THE ASYMPTOTIC-BEHAVIOR OF SOME POPULATION-MODELS [J].
TINEO, A .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 167 (02) :516-529