Higher-order methods for simulations on quantum computers

被引:68
作者
Sornborger, AT [1 ]
Stewart, ED [1 ]
机构
[1] Fermilab Natl Accelerator Lab, Fermilab Astrophys Grp, NASA, Batavia, IL 60510 USA
来源
PHYSICAL REVIEW A | 1999年 / 60卷 / 03期
关键词
D O I
10.1103/PhysRevA.60.1956
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
To implement many-qubit gates for use in quantum simulations on quantum computers efficiently, we develop and present methods reexpressing exp[-i(H-1+H-2+...)Delta t] as a product of factors exp[-iH(1)Delta t], exp[-iH(2)Delta t],..., which is accurate to third or fourth order in Delta t. The methods we derive are an extended form of the symplectic method, and can also be used for an integration of classical Hamiltonians on classical computers. We derive both integral and irrational methods, and find the most efficient methods in both cases. [S1050-2947(99)07209-1].
引用
收藏
页码:1956 / 1965
页数:10
相关论文
共 20 条
[1]   Simulations of many-body Fermi systems on a universal quantum computer [J].
Abrams, DS ;
Lloyd, S .
PHYSICAL REVIEW LETTERS, 1997, 79 (13) :2586-2589
[2]  
BARENCO A, QUANTPH9503016
[3]   Simulating quantum mechanics on a quantum computer [J].
Boghosian, BM ;
Taylor, W .
PHYSICA D-NONLINEAR PHENOMENA, 1998, 120 (1-2) :30-42
[4]   Quantum lattice-gas model for the many-particle Schrodinger equation in d dimensions [J].
Boghosian, BM ;
Taylor, W .
PHYSICAL REVIEW E, 1998, 57 (01) :54-66
[5]  
BOGHOSIAN BM, QUANTPH9701016
[6]  
BOGHOSIAN BM, QUANTPH9604035
[7]   Experimental quantum error correction [J].
Cory, DG ;
Price, MD ;
Maas, W ;
Knill, E ;
Laflamme, R ;
Zurek, WH ;
Havel, TF ;
Somaroo, SS .
PHYSICAL REVIEW LETTERS, 1998, 81 (10) :2152-2155
[8]  
DEUTSCH D, QUANTPH9505018
[9]   SIMULATING PHYSICS WITH COMPUTERS [J].
FEYNMAN, RP .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1982, 21 (6-7) :467-488
[10]   Nth-order operator splitting schemes and nonreversible systems [J].
Goldman, D ;
Kaper, TJ .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (01) :349-367