The role of artificial defects for engineering large effective mode area, flat chromatic dispersion, and low leakage losses in photonic crystal fibers: Towards high speed reconfigurable transmission platforms

被引:40
作者
Florous, N [1 ]
Saitoh, K [1 ]
Koshiba, M [1 ]
机构
[1] Hokkaido Univ, Div Media & Network Technol, Sapporo, Hokkaido 0600814, Japan
来源
OPTICS EXPRESS | 2006年 / 14卷 / 02期
关键词
D O I
10.1364/OPEX.14.000901
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The present paper describes a novel systematic solution to the challenging task of realizing photonic crystal fibers (PCFs) with flat chromatic dispersion, low leakage losses, and large mode area, mainly for applications as information carriers in wide-band high speed optical transmission systems. The proposed design strategy is based on the existence of an artificially-defected air-hole ring in the cladding and on the modulation of the refractive index of the core by assembling additional defected air-holes in the central core region of the fiber. The validation of the proposed design is carried out by adopting an efficient full-vectorial finite element method with perfectly matched layers for accurate characterization of PCFs. The remarkable flat chromatic dispersion as well as the large mode area and the low leakage losses are the main advantages of the proposed PCF structure, making it an ideal candidate for performing wavelength division multiplexing operation in reconfigurable optical transmission systems or as an information delivering platform in high speed optical communication systems. Typical characteristics of the newly proposed PCF are: flattened chromatic dispersion of 6.3 +/- 0.5 ps/km/nm in the S+C+L telecommunication band, and effective mode area as large as 100 mu m(2) in the same wavelength range. We additionally provide numerical data about the performance of the proposed PCF in splicing mode as well as during macrobending operation and we give qualitative information regarding the sensitivity of the proposed transmission platform to structural disorders of the design parameters. (c) 2006 Optical Society of America.
引用
收藏
页码:901 / 913
页数:13
相关论文
共 20 条
[1]   Fiber design considerations for 40 Gb/s systems [J].
Belahlou, A ;
Bickham, S ;
Chowdhury, D ;
Diep, P ;
Evans, A ;
Grochocinski, JM ;
Han, P ;
Kobyakov, A ;
Kumar, S ;
Luther, G ;
Mauro, JC ;
Mauro, Y ;
Mlejnek, M ;
Muktoyuk, MSK ;
Murtagh, MT ;
Raghavan, S ;
Ricci, V ;
Sevian, A ;
Taylor, N ;
Tsuda, S ;
Vasilyev, M ;
Wang, L .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2002, 20 (12) :2290-2305
[2]  
Buck J. A., 2004, FUNDAMENTALS OPTICAL
[3]  
DAVIDSON D, 1987, OPTICAL FIBER TRANSM
[4]   Designing the properties of dispersion-flattened photonic crystal fibers [J].
Ferrando, A ;
Silvestre, E ;
Andrés, P ;
Miret, JJ ;
Andrés, MV .
OPTICS EXPRESS, 2001, 9 (13) :687-697
[5]  
Knight J C, 1996, OPT LETT, V21, P484
[6]   Photonic crystal fibres [J].
Knight, JC .
NATURE, 2003, 424 (6950) :847-851
[7]   Properties of photonic crystal fiber and the effective index model [J].
Knight, JC ;
Birks, TA ;
Russell, PSJ ;
de Sandro, JP .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1998, 15 (03) :748-752
[8]   SIMPLE SCALAR FINITE-ELEMENT APPROACH TO OPTICAL RIB WAVE-GUIDES [J].
KOSHIBA, M ;
SAITOH, H ;
EGUCHI, M ;
HIRAYAMA, K .
IEE PROCEEDINGS-J OPTOELECTRONICS, 1992, 139 (02) :166-171
[9]  
MUKASA K, 2005, EUR C OPT COMM ECOC2
[10]   Ultrawide-band single-mode transmission performance in a low-loss photonic crystal fiber [J].
Nakajima, K ;
Zhou, J ;
Tajima, K ;
Kurokawa, K ;
Fukai, C ;
Sankawa, I .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2005, 23 (01) :7-12