Protostellar disk dynamos and hydromagnetic outflows in primordial star formation

被引:63
作者
Tan, JC
Blackman, EG
机构
[1] Princeton Univ Observ, Princeton, NJ 08544 USA
[2] Univ Rochester, Dept Phys & Astron, Rochester, NY 14627 USA
[3] Univ Rochester, Laser Energet Lab, Rochester, NY 14627 USA
关键词
early universe; MHD; stars : formation; stars : magnetic fields; stars; winds; outflows;
D O I
10.1086/381668
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Are magnetic fields important in primordial star formation? Assuming that star formation occurs via an accretion disk that is turbulent, initially because of local gravitational instability, we calculate the disk structure for realistic accretion rates. We predict that local gravitational viscosity is able to drive accretion, without the disk fragmenting. We then estimate the rate of dynamo amplification of seed magnetic field. Turbulence in a stratified disk can be helical, with different signs of the helicity in each hemisphere. This provides a key ingredient for production of global-scale magnetic fields whose sign of flux is sustained over many orbit times. The resulting fields can drive collimated protostellar outflows that reduce the star formation efficiency from the initial gas cloud, especially once the protostar has contracted to the main sequence, at similar to100 M-circle dot. We estimate that the outflows are powerful enough to eject some material from the host dark matter halo and to initiate relatively strong magnetization of the local intergalactic medium. Close to the protostar, the outflow acts to shield the disk and equatorial regions from radiative feedback, such as ionizing photons, and this may enable accretion up to relatively large stellar masses. We conclude that magnetic fields cannot be ignored in models of primordial star formation.
引用
收藏
页码:401 / 413
页数:13
相关论文
共 81 条
[1]   The formation of the first star in the universe [J].
Abel, T ;
Bryan, GL ;
Norman, ML .
SCIENCE, 2002, 295 (5552) :93-98
[2]   ECCENTRIC GRAVITATIONAL INSTABILITIES IN NEARLY KEPLERIAN DISKS [J].
ADAMS, FC ;
RUDEN, SP ;
SHU, FH .
ASTROPHYSICAL JOURNAL, 1989, 347 (02) :959-976
[3]   Chemical composition of the carbon-rich, extremely metal poor star CS 29498-043: A new class of extremely metal poor stars with excesses of magnesium and silicon [J].
Aoki, W ;
Norris, JE ;
Ryan, SG ;
Beers, TC ;
Ando, H .
ASTROPHYSICAL JOURNAL, 2002, 576 (02) :L141-L144
[4]   Instability, turbulence, and enhanced transport in accretion disks [J].
Balbus, SA ;
Hawley, JF .
REVIEWS OF MODERN PHYSICS, 1998, 70 (01) :1-53
[5]   A POWERFUL LOCAL SHEAR INSTABILITY IN WEAKLY MAGNETIZED DISKS .1. LINEAR-ANALYSIS [J].
BALBUS, SA ;
HAWLEY, JF .
ASTROPHYSICAL JOURNAL, 1991, 376 (01) :214-222
[6]   On the dynamical foundations of α disks [J].
Balbus, SA ;
Papaloizou, JCB .
ASTROPHYSICAL JOURNAL, 1999, 521 (02) :650-658
[7]   THE HIGH-VELOCITY MOLECULAR FLOWS NEAR YOUNG STELLAR OBJECTS [J].
BALLY, J ;
LADA, CJ .
ASTROPHYSICAL JOURNAL, 1983, 265 (02) :824-847
[8]   On the stability of very massive primordial stars [J].
Baraffe, I ;
Heger, A ;
Woosley, SE .
ASTROPHYSICAL JOURNAL, 2001, 550 (02) :890-896
[9]   New dynamical mean-field dynamo theory and closure approach [J].
Blackman, EG ;
Field, GB .
PHYSICAL REVIEW LETTERS, 2002, 89 (26) :1-265007
[10]   Dynamic nonlinearity in large-scale dynamos with shear [J].
Blackman, EG ;
Brandenburg, A .
ASTROPHYSICAL JOURNAL, 2002, 579 (01) :359-373