Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra

被引:389
作者
Carrer, M [1 ]
Urbinati, C [1 ]
机构
[1] Univ Padua, Dipartimento Territorio & Sistemi AgroForestali, Treeline Ecol Res Unit, I-35020 Legnaro, PD, Italy
关键词
dendroclimatology; dendroecology; Italy; Larix decidua; Pinus cembra; response function; timberline; tree age; tree height; tree ring;
D O I
10.1890/02-0478
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Dendrochronology generally operates under the assumption that climategrowth relationships are age independent, once growth trends and/or disturbance pulses have been accounted for. However, several studies have demonstrated that tree physiology undergoes changes with age. This may cause growth-related climate signals to vary over time. Using chronology statistics and response functions, we tested the consistency of climate-growth responses in tree-ring series from Larix decidua and Pinus cembra trees of four age classes. Tree-ring statistics (mean sensitivity, standard deviation, correlation between trees, and first principal component) did not change significantly with age in P. cembra, whereas in L. decidua they appeared to be correlated with age classes. Response function analysis indicated that climate accounts for a high amount of variance in tree-ring widths in both species. The older the trees are, the higher the variance explained by climate, the significance of the models, and the percentage of trees with significant responses. Age influence on climate sensitivity is likely to be non-monotonic. In L. decidua, the most important response function variables changed with age according to a twofold pattern: increasing for trees younger than 200 years and decreasing or constant for older trees. A similar pattern was observed in both species for the relationship between tree height and age. It is hypothesized that an endogenous parameter linked to hydraulic status becomes increasingly limiting as trees grow and age, inducing more stressful conditions and a higher climate sensitivity in older individuals. The results of this study confirm that the climate signal is maximized in older trees, but also that a sampling procedure non-stratified by age (especially in multi-aged forests) could lead to biased mean chronologies due to the higher amount of noise present in younger trees. The issue requires more extensive research as there are important ecological implications both at small and large geographic scales. Predictive modeling of forest dynamics and paleo-climate reconstructions may be less robust if the age effect is not accounted for.
引用
收藏
页码:730 / 740
页数:11
相关论文
共 58 条
[1]   Tree water relations and climatic variations at the alpine timberline: seasonal changes of sap flux and xylem water potential in Larix decidua Miller, Picea abies (L.) Karst, and Pinus cembra L. [J].
Anfodillo, T ;
Rento, S ;
Carraro, V ;
Furlanetto, L ;
Urbinati, C ;
Carrer, M .
ANNALES DES SCIENCES FORESTIERES, 1998, 55 (1-2) :159-172
[2]  
Aniol R. W., 1987, Dendrochronologia, P135
[3]  
Badalotti A, 2000, ANN FOREST SCI, V57, P623, DOI 10.1051/forest:2000146
[4]  
Beniston Martin, 2002, Dendrochronologia, V20, P117, DOI 10.1078/1125-7865-00012
[5]   Age-related changes in photosynthesis of woody plants [J].
Bond, BJ .
TRENDS IN PLANT SCIENCE, 2000, 5 (08) :349-353
[6]  
BRADLEY RS, 1992, CLIMATE SINCE AD 150
[7]  
Briffa K.R., 1990, Methods of Dendrochronology: Applications in the Environmental Sciences, P240, DOI DOI 10.1007/978-94-015-7879-0_5
[8]   Spatial analysis of structural and tree-ring related parameters in a timberline forest in the Italian Alps [J].
Carrer, M ;
Urbinati, C .
JOURNAL OF VEGETATION SCIENCE, 2001, 12 (05) :643-652
[9]  
Carrer M., 1998, IMPACTS CLIMATE VARI, P171, DOI DOI 10.1007/BFB0009772
[10]  
CARRER M, 1997, THESIS U PADOVA PADO