Noise induced synchronization in a neuronal oscillator

被引:28
作者
Pakdaman, K
Mestivier, D
机构
[1] INSERM, U444, Fac Med St Antoine, F-75571 Paris 21, France
[2] Univ Paris 07, INSERM, U444, F-75251 Paris 5, France
关键词
random dynamical system; Lyapunov exponent; synchronization; neuron;
D O I
10.1016/j.physd.2003.12.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Neuronal oscillators engage into quasiperiodic or phase locked discharges when driven by a weak periodic signal. These responses contrast with those evoked by weak aperiodic noise-like forcing mimicking realistic stimuli. The latter produce synchronous firing across neuronal populations, reflecting reliable firing. We analyze this phenomenon using random dynamical system theory applied to a biophysical neuronal oscillator model. We show that in agreement with experimental observations, weak noise-like forcing leads invariably to discharge synchrony of neuronal oscillators. In terms of neuronal coding, our result shows that neurons can reliably encode realistic broad-band noise-like signals, even though they may not do so for periodic signals. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:123 / 137
页数:15
相关论文
共 39 条
[1]  
ADELMAN WJ, 1975, FED P, V34
[2]   TEMPORALLY COHERENT ORGANIZATION AND INSTABILITIES IN SQUID GIANT-AXONS [J].
AIHARA, K ;
MATSUMOTO, G .
JOURNAL OF THEORETICAL BIOLOGY, 1982, 95 (04) :697-720
[3]   PERIODIC AND NON-PERIODIC RESPONSES OF A PERIODICALLY FORCED HODGKIN-HUXLEY OSCILLATOR [J].
AIHARA, K ;
MATSUMOTO, G ;
IKEGAYA, Y .
JOURNAL OF THEORETICAL BIOLOGY, 1984, 109 (02) :249-269
[4]   The stochastic brusselator:: Parametric noise destroys Hopf bifurcation [J].
Arnold, L ;
Bleckert, G ;
Schenk-Hoppé, KR .
STOCHASTIC DYNAMICS, 1999, :71-92
[5]  
Arnold L., 1998, Springer Monographs in Mathematics
[6]  
ARNOLD L, 2000, STOCHASTIC PROCESSES, V557, P280
[7]  
Berge P., 1986, ORDER CHAOS
[8]   SPIKE INITIATION BY TRANSMEMBRANE CURRENT - WHITE-NOISE ANALYSIS [J].
BRYANT, HL ;
SEGUNDO, JP .
JOURNAL OF PHYSIOLOGY-LONDON, 1976, 260 (02) :279-314
[9]   Additive noise destroys a pitchfork bifurcation [J].
Crauel H. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1998, 10 (2) :259-274
[10]  
Glass L., 1988, CLOCKS CHAOS RHYTHMS, DOI [10.1515/9780691221793, DOI 10.1515/9780691221793]