Phase diagram of complex fluids using an efficient integral equation method - art. no. 204901

被引:38
作者
Charpentier, I
Jakse, N
机构
[1] Lab Modelisat & Calcul, F-38041 Grenoble, France
[2] Univ Metz, Lab Phys Milieux Denses, F-57078 Metz, France
关键词
D O I
10.1063/1.2117010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present an adaptive technique for the determination of the phase diagram of fluids within the integral equation theory. It enables an efficient and accurate systematic mapping of the thermodynamic space in order to construct the binodal and spinodal lines. Results are obtained with the thermodynamically consistent integral equation proposed by Sarkisov [J. Chem. Phys. 114, 9496 (2001)] within the tangent linear technique that yields an exact differentiation of correlation functions. The generality of the numerical approach is assessed by determining both the liquid-vapor coexistence and the critical parameters of the generalized Lennard-Jones (n,6) potentials with varying repulsive part, including the hard-sphere limit.
引用
收藏
页数:9
相关论文
共 37 条
[1]  
Allen M. P., 1990, COMPUTER SIMULATION
[2]   ATOM-ATOM STRUCTURE FACTORS OF HYDROGEN HALIDES - A MOLECULAR APPROACH REVISITED [J].
ALVAREZ, M ;
LOMBA, E ;
MARTIN, C ;
LOMBARDERO, M .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (09) :3680-3685
[3]   INABILITY OF THE HYPERNETTED-CHAIN INTEGRAL-EQUATION TO EXHIBIT A SPINODAL LINE [J].
BELLONI, L .
JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (10) :8080-8095
[4]   Integral equation theory description of phase equilibria in classical fluids [J].
Caccamo, C .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1996, 274 (1-2) :1-105
[5]   PHASE-DIAGRAM OF SIMPLE FLUIDS - A COMPREHENSIVE THEORETICAL APPROACH [J].
CACCAMO, C ;
GIAQUINTA, PV ;
GIUNTA, G .
JOURNAL OF PHYSICS-CONDENSED MATTER, 1993, 5 :B75-B82
[6]   Coexistence and criticality of fluids with long-range potentials [J].
Camp, PJ ;
Patey, GN .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (01) :399-408
[7]   Exact numerical derivatives of the pair-correlation function of simple liquids using the tangent linear method [J].
Charpentier, I ;
Jakse, N .
JOURNAL OF CHEMICAL PHYSICS, 2001, 114 (05) :2284-2292
[8]   Integral equation theory of Lennard-Jones fluids: A modified Verlet bridge function approach [J].
Choudhury, N ;
Ghosh, SK .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (19) :8517-8522
[9]   SOLUTION OF THE ORNSTEIN-ZERNIKE EQUATION IN THE VICINITY OF THE CRITICAL-POINT OF A SIMPLE FLUID [J].
CUMMINGS, PT ;
MONSON, PA .
JOURNAL OF CHEMICAL PHYSICS, 1985, 82 (09) :4303-4311
[10]   INTEGRAL-EQUATION THEORY FOR UNCHARGED LIQUIDS - THE LENNARD-JONES FLUID AND THE BRIDGE FUNCTION [J].
DUH, DM ;
HAYMET, ADJ .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (07) :2625-2633