Asymptotic analysis for penalty and barrier methods in convex and linear programming

被引:92
作者
Auslender, A
Cominetti, R
Haddou, M
机构
[1] UNIV CHILE,SANTIAGO,CHILE
[2] UNIV CLERMONT FERRAND,LAB MATH APPL,F-63177 CLERMONT FERRAN,FRANCE
关键词
convex and linear programming; penalty methods; optimal trajectory; asymptotic analysis;
D O I
10.1287/moor.22.1.43
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider a wide class of penalty and barrier methods for convex programming which includes a number of specific functions proposed in the literature. We provide a systematic way to generate penalty and barrier functions in this class, and we analyze the existence of primal and dual optimal paths generated by these penalty methods, as well as their convergence to the primal and dual optimal sets. For linear programming we prove that these optimal paths converge to single points.
引用
收藏
页码:43 / 62
页数:20
相关论文
共 22 条
[1]  
ATTOUCH H, 1994, VISCOSITY SOLUTIONS
[2]   THE NONLINEAR GEOMETRY OF LINEAR-PROGRAMMING .2. LEGENDRE TRANSFORM COORDINATES AND CENTRAL TRAJECTORIES [J].
BAYER, DA ;
LAGARIAS, JC .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 314 (02) :527-581
[3]  
BENTAL A, 1993, 493 TECHN ISR I TECH
[4]  
BENTAL A, IN PRESS TRUNCATED L
[5]  
Bertsekas D. P., 2019, Reinforcement learning and optimal control
[6]  
CARROL CW, 1961, OPER RES, V9
[7]  
CHEN C, 1994, 9411 CTR PAR OPT
[8]   ASYMPTOTIC ANALYSIS OF THE EXPONENTIAL PENALTY TRAJECTORY IN LINEAR-PROGRAMMING [J].
COMINETTI, R ;
SANMARTIN, J .
MATHEMATICAL PROGRAMMING, 1994, 67 (02) :169-187
[9]   STABLE EXPONENTIAL-PENALTY ALGORITHM WITH SUPERLINEAR CONVERGENCE [J].
COMINETTI, R ;
DUSSAULT, JP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1994, 83 (02) :285-309
[10]  
FIACCO A, 1967, THESIS NW U EVANSTON