Local scale invariance and strongly anisotropic equilibrium critical systems

被引:99
作者
Henkel, M
机构
[1] Laboratoire de Physique des Matériaux, Université Henri Poincaré Nancy I, Vandœuvre-lès-Nancy Cedex, F-54506
关键词
D O I
10.1103/PhysRevLett.78.1940
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A new set of infinitesimal transformations generalizing scale invariance for strongly anisotropic critical systems is considered. It is shown that such a generalization is possible if the anisotropy exponent theta=2/N, with N = 1,2,3.... Differential equations for the two-point function are derived and explicitly solved for all values of N. Known special cases are conformal invariance (N=2) and Schrodinger invariance (N=1). For N=4 and N=6, the results contain as special cases the exactly known scaling forms obtained for the spin-spin correlation function in the axial next-nearest-neighbor spherical model at its Lifshitz points of first and second order.
引用
收藏
页码:1940 / 1943
页数:4
相关论文
共 29 条