Path-integral representation for quantum spin models: Application to the quantum cavity method and Monte Carlo simulations

被引:57
作者
Krzakala, Florent [1 ,2 ]
Rosso, Alberto [3 ]
Semerjian, Guilhem [4 ,5 ]
Zamponi, Francesco [4 ,5 ]
机构
[1] CNRS, Lab PCT, F-75231 Paris, France
[2] ESPCI ParisTech, UMR Gulliver 7083, F-75231 Paris, France
[3] Univ Paris 11, LPTMS, CNRS, UMR8626, F-91405 Orsay, France
[4] Univ Paris 06, LPTENS, CNRS, F-75231 Paris 05, France
[5] Univ Paris 06, ENS, UMR 8549, F-75231 Paris 05, France
关键词
D O I
10.1103/PhysRevB.78.134428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The cavity method is a well-established technique for solving classical spin models on sparse random graphs (mean-field models with finite connectivity). Laumann [Phys. Rev. B 78, 134424 (2008)] proposed recently an extension of this method to quantum spin-1/2 models in a transverse field, using a discretized Suzuki-Trotter imaginary-time formalism. Here we show how to take analytically the continuous imaginary-time limit. Our main technical contribution is an explicit procedure to generate the spin trajectories in a path-integral representation of the imaginary-time dynamics. As a side result we also show how this procedure can be used in simple heat bath Monte Carlo simulations of generic quantum spin models. The replica symmetric continuous-time quantum cavity method is formulated for a wide class of models and applied as a simple example on the Bethe lattice ferromagnet in a transverse field. The results of the methods are confronted with various approximation schemes in this particular case. On this system we performed quantum Monte Carlo simulations that confirm the exactness of the cavity method in the thermodynamic limit.
引用
收藏
页数:19
相关论文
共 68 条
[1]   SELF-CONSISTENT THEORY OF LOCALIZATION [J].
ABOUCHACRA, R ;
ANDERSON, PW ;
THOULESS, DJ .
JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1973, 6 (10) :1734-1752
[2]   GEOMETRIC ASPECTS OF QUANTUM SPIN STATES [J].
AIZENMAN, M ;
NACHTERGAELE, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1994, 164 (01) :17-63
[3]   The ALPS Project: Open Source Software for Strongly Correlated Systems [J].
Alet, F. ;
Dayal, P. ;
Grzesik, A. ;
Honecker, A. ;
Koerner, M. ;
Laeuchli, A. ;
Manmana, S. R. ;
McCulloch, I. P. ;
Michel, F. ;
Noack, R. M. ;
Schmid, G. ;
Schollwoeck, U. ;
Stoeckli, F. ;
Todo, S. ;
Trebst, S. ;
Troyer, M. ;
Werner, P. ;
Wessel, S. .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 :30-35
[4]   Generalized directed loop method for quantum Monte Carlo simulations [J].
Alet, F ;
Wessel, S ;
Troyer, M .
PHYSICAL REVIEW E, 2005, 71 (03)
[5]  
[Anonymous], 2000, QUANTUM PHASE TRANSI, DOI [DOI 10.1017/CBO9780511622540, DOI 10.1017/CBO9780511973765]
[6]  
[Anonymous], 2005, GUIDE MONTE CARLO SI
[7]  
APOLLONI B, 1990, STOCHASTIC PROCESSES, V97
[8]  
Baxter R. J., 1989, Baxter
[9]   Simulations of discrete quantum systems in continuous Euclidean time [J].
Beard, BB ;
Wiese, UJ .
PHYSICAL REVIEW LETTERS, 1996, 77 (25) :5130-5133
[10]   Quantum Thouless-Anderson-Palmer equations for glassy systems [J].
Biroli, G ;
Cugliandolo, LF .
PHYSICAL REVIEW B, 2001, 64 (01) :142061-1420615