Microfluidics for Miniaturized Laboratories on a Chip

被引:122
作者
Franke, Thomas A. [2 ]
Wixforth, Achim [1 ]
机构
[1] Univ Augsburg, D-86159 Augsburg, Germany
[2] Univ Augsburg, Microfluid Grp, D-86159 Augsburg, Germany
关键词
materials science; mechanical properties; microfluidic flow chamber; proteins; surface acoustic waves;
D O I
10.1002/cphc.200800349
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microfluidic systems promise solutions for high throughput and highly specific analysis for biology, medicine and chemistry while consuming only tiny amounts of reactants and space. On these lob-on-a-chip platforms often multiple physical effects such as electrokinetic, acoustic or capillary phenomena from various disciplines are exploited to gain the optimal functionality. The fluidics on these small length scales differ significantly from our experience of the macroscopic world. In this Review we survey some of the approaches and techniques to handle minute amounts of fluid volumes in microfluidic systems with special focus on surface face acoustic wave driven fluidics, a technique developed in our laboratory, Here, we outline the basics of this technique and demonstrate, for example, how acoustic mixing and fluid actuation is realized. Furthermore we discuss the interplay of different physical effects in microfluidic systems and illustrate their usefulness for several applications.
引用
收藏
页码:2140 / 2156
页数:17
相关论文
共 81 条
[1]  
AHN CH, 1995, MICRO ELECTRO MECHANICAL SYSTEMS - IEEE PROCEEDINGS, 1995, P408, DOI 10.1109/MEMSYS.1995.472590
[2]   Shear-flow-induced unfolding of polymeric globules [J].
Alexander-Katz, A. ;
Schneider, M. F. ;
Schneider, S. W. ;
Wixforth, A. ;
Netz, R. R. .
PHYSICAL REVIEW LETTERS, 2006, 97 (13)
[3]   Microfabrication and microfluidics for tissue engineering: state of the art and future opportunities [J].
Andersson, H ;
van den Berg, A .
LAB ON A CHIP, 2004, 4 (02) :98-103
[4]   Formation of dispersions using "flow focusing" in microchannels [J].
Anna, SL ;
Bontoux, N ;
Stone, HA .
APPLIED PHYSICS LETTERS, 2003, 82 (03) :364-366
[5]   MICROFABRICATED ELECTROHYDRODYNAMIC PUMPS [J].
BART, SF ;
TAVROW, LS ;
MEHREGANY, M ;
LANG, JH .
SENSORS AND ACTUATORS A-PHYSICAL, 1990, 21 (1-3) :193-197
[6]   Wetting morphologies on substrates with striped surface domains [J].
Brinkmann, M ;
Lipowsky, R .
JOURNAL OF APPLIED PHYSICS, 2002, 92 (08) :4296-4306
[7]   Biotechnology at low Reynolds numbers [J].
Brody, JP ;
Yager, P ;
Goldstein, RE ;
Austin, RH .
BIOPHYSICAL JOURNAL, 1996, 71 (06) :3430-3441
[8]   Diffusion-based extraction in a microfabricated device [J].
Brody, JP ;
Yager, P .
SENSORS AND ACTUATORS A-PHYSICAL, 1997, 58 (01) :13-18
[9]   Biomimetic technique for adhesion-based collection and separation of cells in a microfluidic channel [J].
Chang, WC ;
Lee, LP ;
Liepmann, D .
LAB ON A CHIP, 2005, 5 (01) :64-73
[10]   Passively driven integrated microfluidic system for separation of motile sperm [J].
Cho, BS ;
Schuster, TG ;
Zhu, XY ;
Chang, D ;
Smith, GD ;
Takayama, S .
ANALYTICAL CHEMISTRY, 2003, 75 (07) :1671-1675