Interchange of catalytic activity within the 2-enoyl-coenzyme a hydratase isomerase superfamily based on a common active site template

被引:61
作者
Xiang, H [1 ]
Luo, LS [1 ]
Taylor, KL [1 ]
Dunaway-Mariano, D [1 ]
机构
[1] Univ New Mexico, Dept Chem, Albuquerque, NM 87131 USA
关键词
D O I
10.1021/bi9901432
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The structures and chemical pathways associated with the members of the 2-enoyl-CoA hydratase/isomerase enzyme superfamily are compared to show that a common active site design provides the members of this family with a CoA binding site, an expandable acyl binding pocket, an oxyanion hole for binding/polarizing the thioester C=O, and multiple active site stations for the positioning of acidic and basic amino acid side chains for use in proton shuttling. It is hypothesized that this active sire template can be tailored to catalyze a wide range of chemical transformations through strategic positioning of acid/base residues among the active site stations. To test this hypothesis, the active site of one member of the 2-enoyl-CoA hydratase/isomerase family, 4-chlorobenzoyl-CoA dehalogenase, was altered by site-directed mutagenesis to include the two glutamate residues functioning in acid/base catalysis in a second family member, crotonase. Catalysis of the syn hydration of crotonyl-CoA, absent in the wild-type 4-chlorobenzoyl-CoA dehalogenase, was shown to occur with the structurally modified 4-chlorobenzoyl-CoA dehalogenase at k(cat) = 0.06 s(-1) and K-m = 50 mu M.
引用
收藏
页码:7638 / 7652
页数:15
相关论文
共 75 条
[1]   Understanding enzyme superfamilies - Chemistry as the fundamental determinant in the evolution of new catalytic activities [J].
Babbitt, PC ;
Gerlt, JA .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (49) :30591-30594
[2]   CROTONASE-CATALYZED BETA-ELIMINATION IS CONCERTED - A DOUBLE ISOTOPE EFFECT STUDY [J].
BAHNSON, BJ ;
ANDERSON, VE .
BIOCHEMISTRY, 1991, 30 (24) :5894-5906
[3]   ISOTOPE EFFECTS ON THE CROTONASE REACTION [J].
BAHNSON, BJ ;
ANDERSON, VE .
BIOCHEMISTRY, 1989, 28 (10) :4173-4181
[4]   Structure of 4-chlorobenzoyl coenzyme A dehalogenase determined to 1.8 angstrom resolution: An enzyme catalyst generated via adaptive mutation [J].
Benning, MM ;
Taylor, KL ;
Liu, RQ ;
Yang, G ;
Xiang, H ;
Wesenberg, G ;
DunawayMariano, D ;
Holden, HM .
BIOCHEMISTRY, 1996, 35 (25) :8103-8109
[5]   EVOLUTION IN ACTION [J].
BETZ, JL ;
BROWN, PR ;
SMYTH, MJ ;
CLARKE, PH .
NATURE, 1974, 247 (5439) :261-264
[6]  
BRADFORD MM, 1976, ANAL BIOCHEM, V72, P248, DOI 10.1016/0003-2697(76)90527-3
[7]   ISOLATION AND CHARACTERIZATION OF THE 3 POLYPEPTIDE COMPONENTS OF 4-CHLOROBENZOATE DEHALOGENASE FROM PSEUDOMONAS SP STRAIN CBS-3 [J].
CHANG, KH ;
LIANG, PH ;
BECK, W ;
SCHOLTEN, JD ;
DUNAWAYMARIANO, D .
BIOCHEMISTRY, 1992, 31 (24) :5605-5610
[8]   PURIFICATION AND MECHANISM OF DELTA(3),DELTA(5)-T-2,T-4-DIENOYL-COA ISOMERASE FROM RAT-LIVER [J].
CHEN, LS ;
JIN, SJ ;
TSERNG, KY .
BIOCHEMISTRY, 1994, 33 (34) :10527-10534
[9]   CONSTITUTIVE ACTIVATION OF L-FUCOSE GENES BY AN UNLINKED MUTATION IN ESCHERICHIA-COLI [J].
CHEN, YM ;
CHAKRABARTI, T ;
LIN, ECC .
JOURNAL OF BACTERIOLOGY, 1984, 159 (02) :725-729
[10]   Raman study of the polarizing forces promoting catalysis in 4-chlorobenzoate-CoA dehalogenase [J].
Clarkson, J ;
Tonge, PJ ;
Taylor, KL ;
DunawayMariano, D ;
Carey, PR .
BIOCHEMISTRY, 1997, 36 (33) :10192-10199