Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture

被引:410
作者
Mauck, RL [1 ]
Yuan, X [1 ]
Tuan, RS [1 ]
机构
[1] NIAMSD, Cartilage Biol & Orthopaed Branch, Dept Hlth & Human Serv, NIH, Bethesda, MD 20892 USA
关键词
mesenchymal stem cells; agarose; mechanical properties; chondrogenesis; chondrocyte; cartilage;
D O I
10.1016/j.joca.2005.09.002
中图分类号
R826.8 [整形外科学]; R782.2 [口腔颌面部整形外科学]; R726.2 [小儿整形外科学]; R62 [整形外科学(修复外科学)];
学科分类号
摘要
Background. The developmental history of the chondrocyte results in a cell whose biosynthetic activities are optimized to maintain the concentration and organization of a mechanically functional cartilaginous extracellular matrix. While useful for cartilage tissue engineering studies, the limited supply of healthy autologous chondrocytes may preclude their clinical use. Consequently, multipotential mesenchymal stem cells (MSCs) have been proposed as an alternative cell source. Objective: While MSCs undergo chondrogenesis, few studies have assessed the mechanical integrity of their forming matrix. Furthermore, efficiency of matrix formation must be determined in comparison to healthy chondrocytes from the same donor. Given the scarcity of healthy human tissue, this study determined the feasibility of isolating bovine chondrocytes and MSCs, and examined their long-term maturation in three-dimensional agarose culture. Experimental design: Bovine MSCs were seeded in agarose and induced to undergo chondrogenesis. Mechanical and biochemical properties of MSC-laden constructs were monitored over a 10-week period and compared to those of chondrocytes derived from the same group of animals maintained similarly. Results: Our results show that while chondrogenesis does occur in MSC-laden hydrogels, the amount of the forming matrix and measures of its mechanical properties are lower than that produced by chondrocytes under the same conditions. Furthermore, some important properties, particularly glycosaminoglycan content and equilibrium modulus, plateau with time in MSC-laden constructs, suggesting that diminished capacity is not the result of delayed differentiation. Conclusions: These findings suggest that while MSCs do generate constructs with substantial cartilaginous properties, further optimization must be done to achieve levels similar to those produced by chondrocytes. Published by Elsevier Ltd on behalf of OsteoArthritis Research Society International.
引用
收藏
页码:179 / 189
页数:11
相关论文
共 69 条
[1]   Effects of transforming growth factor β1 and dexamethasone on the growth and chondrogenic differentiation of adipose-derived stromal cells [J].
Awad, HA ;
Halvorsen, YDC ;
Gimble, JM ;
Guilak, F .
TISSUE ENGINEERING, 2003, 9 (06) :1301-1312
[2]   Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds [J].
Awad, HA ;
Wickham, MQ ;
Leddy, HA ;
Gimble, JM ;
Guilak, F .
BIOMATERIALS, 2004, 25 (16) :3211-3222
[3]   Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy [J].
Baksh, D ;
Song, L ;
Tuan, RS .
JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, 2004, 8 (03) :301-316
[4]   Differential effects of growth factors on tissue-engineered cartilage [J].
Blunk, T ;
Sieminski, AL ;
Gooch, KJ ;
Courter, DL ;
Hollander, AP ;
Nahir, M ;
Langer, R ;
Vunjak-Novakovic, G ;
Freed, JE .
TISSUE ENGINEERING, 2002, 8 (01) :73-84
[5]   Chondrogenic differentiation of bovine bone marrow mesenchymal stem cells in pellet cultural system [J].
Bosnakovski, D ;
Mizuno, M ;
Kim, G ;
Ishiguro, T ;
Okumura, M ;
Iwanaga, T ;
Kadosawa, T ;
Fujinaga, T .
EXPERIMENTAL HEMATOLOGY, 2004, 32 (05) :502-509
[6]  
Bruder SP, 1997, J CELL BIOCHEM, V64, P278, DOI 10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO
[7]  
2-F
[8]  
Bujia J, 1996, EUR ARCH OTO-RHINO-L, V253, P336
[9]   Functional tissue engineering: The role of biomechanics [J].
Butler, DL ;
Goldstein, SA ;
Guilak, F .
JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME, 2000, 122 (06) :570-575
[10]   MESENCHYMAL STEM-CELLS [J].
CAPLAN, AI .
JOURNAL OF ORTHOPAEDIC RESEARCH, 1991, 9 (05) :641-650