Nonlinear balance and quasi-geostrophic sets

被引:37
作者
Warn, T
机构
[1] Department of Atmospheric and Oceanic Sciences, McGill University, Montréal, QC
关键词
D O I
10.1080/07055900.1997.9649588
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
It is argued that nonlinear balancing schemes obtained by Rossby number expansions usually diverge due to the inevitable presence of inertial-gravity wave activity This divergence undermines the theoretical basis of the slow or invariant manifold of Leith (1980) and Lorenz (1980). An alternate definition of balanced motion is proposed.
引用
收藏
页码:135 / 145
页数:11
相关论文
共 21 条
[1]  
BAER F, 1977, MON WEATHER REV, V105, P1536, DOI 10.1175/1520-0493(1977)105<1536:OCFOGM>2.0.CO
[2]  
2
[3]  
Bender C. M., 1999, Advanced Mathematical Methods for Scientists and Engineers, V1
[4]  
Bokhove O, 1996, J ATMOS SCI, V53, P276, DOI 10.1175/1520-0469(1996)053<0276:OHBDAT>2.0.CO
[5]  
2
[6]  
BROWNING G, 1980, J ATMOS SCI, V37, P424
[7]   THE USE OF THE PRIMITIVE EQUATIONS OF MOTION IN NUMERICAL PREDICTION [J].
CHARNEY, J .
TELLUS, 1955, 7 (01) :22-26
[8]   NORMAL MODE INITIALIZATION [J].
DALEY, R .
REVIEWS OF GEOPHYSICS, 1981, 19 (03) :450-468
[9]  
ERRICO RM, 1982, J ATMOS SCI, V39, P573, DOI 10.1175/1520-0469(1982)039<0573:NMIATG>2.0.CO
[10]  
2