On global existence of solutions to coupled matrix Riccati equations in closed-loop Nash games

被引:86
作者
Freiling, G
Jank, G
AbouKandil, H
机构
[1] RHEIN WESTFAL TH AACHEN, LEHRSTUHL MATH 2, D-52056 AACHEN, GERMANY
[2] ECOLE NORMALE SUPER, LESIR, CACHAN, FRANCE
关键词
D O I
10.1109/9.481532
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present comparison and global existence results for solutions of coupled matrix Riccati differential equations appearing in closed-loop Nash games and in mixed H-2/H-infinity-type problems, Convergence of solutions is established for the diagonal case. Solutions of the corresponding algebraic equations are discussed using numerical examples.
引用
收藏
页码:264 / 269
页数:6
相关论文
共 17 条
[1]  
Basar T., 1999, Dynamic noncooperative game theory, V23
[2]  
Cruz JB., 1971, Journal of Optimization Theory and Applications, V7, P240, DOI DOI 10.1007/BF00928706
[3]  
ENGWERDA JC, 1995, OPEN LOOP NASH EQUIL
[4]  
FEUCHT M, 1994, THESIS U ULM
[5]  
GAJIC Z, 1993, PARALLEL ALGORITHMS
[6]  
Knobloch HW., 1985, LINEARE KONTROLLTHEO
[7]   A NASH GAME APPROACH TO MIXED H-2/H-INFINITY CONTROL [J].
LIMEBEER, DJN ;
ANDERSON, BDO .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1994, 39 (01) :69-82
[8]   EQUILIBRIUM FEEDBACK CONTROL IN LINEAR GAMES WITH QUADRATIC COSTS [J].
LUKES, DL .
SIAM JOURNAL ON CONTROL, 1971, 9 (02) :234-&
[9]   SERIES SOLUTION TO NASH STRATEGY FOR LARGE-SCALE INTERCONNECTED SYSTEMS [J].
OZGUNER, U ;
PERKINS, WR .
AUTOMATICA, 1977, 13 (03) :313-315
[10]   UNIQUENESS OF NASH STRATEGIES FOR A CLASS OF ANALYTIC DIFFERENTIAL GAMES [J].
PAPAVASSILOPOULOS, GP ;
CRUZ, JB .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1979, 27 (02) :309-314