Nontrivial polydispersity exponents in aggregation models

被引:19
作者
Cueille, S
Sire, C
机构
[1] Laboratoire de Physique Quantique (UMR C5626 du CNRS), UniversitéPaul Sabatier, Toulouse Cedex
来源
PHYSICAL REVIEW E | 1997年 / 55卷 / 05期
关键词
LARGE-TIME BEHAVIOR; IRREVERSIBLE AGGREGATION; 2-DIMENSIONAL TURBULENCE; SMOLUCHOWSKI EQUATIONS; SCALING BEHAVIOR; KINETICS; COAGULATION; COALESCENCE; STATISTICS; CLUSTERS;
D O I
10.1103/PhysRevE.55.5465
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We consider the scaling solutions of Smoluchowski's equation of irreversible aggregation, for a nongelling collision kernel. The scaling mass distribution f(s) diverges as s(-tau) when s --> 0. tau is nontrivial and could, until now, only be computed by numerical simulations. We develop here general methods to obtain exact bounds and good approximations of tau. For the specific kernel K-D(d)(x,y) = (x(1/D) + y(1/D))(d), describing a mean-field model of particles moving in d dimensions and aggregating with conservation of ''mass'' s = R-D (R is the particle radius), perturbative and nonperturbative expansions are derived. For a general kernel, we find exact inequalities for tau and develop a variational approximation which is used to carry out a systematic study of tau(d,D) for K-D(d). The agreement is excellent both with the expansions we derived and with existing numerical values. Finally, we discuss a possible application to 2d decaying turbulence.
引用
收藏
页码:5465 / 5478
页数:14
相关论文
共 36 条
[1]   DECAY KINETICS OF BALLISTIC ANNIHILATION [J].
BENNAIM, E ;
REDNER, S ;
LEYVRAZ, F .
PHYSICAL REVIEW LETTERS, 1993, 70 (12) :1890-1893
[2]   A SIMPLE POINT VORTEX MODEL FOR 2-DIMENSIONAL DECAYING TURBULENCE [J].
BENZI, R ;
COLELLA, M ;
BRISCOLINI, M ;
SANTANGELO, P .
PHYSICS OF FLUIDS A-FLUID DYNAMICS, 1992, 4 (05) :1036-1039
[3]   STATISTICS OF BALLISTIC AGGLOMERATION [J].
CARNEVALE, GF ;
POMEAU, Y ;
YOUNG, WR .
PHYSICAL REVIEW LETTERS, 1990, 64 (24) :2913-2916
[4]   EVOLUTION OF VORTEX STATISTICS IN 2-DIMENSIONAL TURBULENCE [J].
CARNEVALE, GF ;
MCWILLIAMS, JC ;
POMEAU, Y ;
WEISS, JB ;
YOUNG, WR .
PHYSICAL REVIEW LETTERS, 1991, 66 (21) :2735-2737
[5]  
CUEILLE S, UNPUB
[6]   KINETICS OF DROPLET GROWTH-PROCESSES - SIMULATIONS, THEORY, AND EXPERIMENTS [J].
FAMILY, F ;
MEAKIN, P .
PHYSICAL REVIEW A, 1989, 40 (07) :3836-3854
[7]  
Friedlander SK., 1977, SMOKE DUST HAZE FUND
[8]   LONG-TIME CROSSOVER PHENOMENA IN COAGULATION KINETICS [J].
KANG, K ;
REDNER, S ;
MEAKIN, P ;
LEYVRAZ, F .
PHYSICAL REVIEW A, 1986, 33 (02) :1171-1182
[9]   SCALING OF KINETICALLY GROWING CLUSTERS [J].
KOLB, M ;
BOTET, R ;
JULLIEN, R .
PHYSICAL REVIEW LETTERS, 1983, 51 (13) :1123-1126
[10]   NUMERICAL-SOLUTION OF THE SMOLUCHOWSKI KINETIC-EQUATION AND ASYMPTOTICS OF THE DISTRIBUTION FUNCTION [J].
KRIVITSKY, DS .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1995, 28 (07) :2025-2039