Synergistic functions of SII and p300 in productive activator-dependent transcription of chromatin templates

被引:74
作者
Guermah, M
Palhan, VB
Tackett, AJ
Chait, BT
Roeder, RG
机构
[1] Rockefeller Univ, Biochem & Mol Biol Lab, New York, NY 10021 USA
[2] Rockefeller Univ, Lab Mass Spectrometry & Gaseous Ion Chem, New York, NY 10021 USA
关键词
D O I
10.1016/j.cell.2006.01.055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We have reconstituted a highly purified RNA polymerase II transcription system containing chromatin templates assembled with purified histones and assembly factors, the histone acetyltransferase p300, and components of the general transcription machinery that, by themselves, suffice for activated transcription (initiation and elongation) on DNA templates. We show that this system mediates activator-dependent initiation, but not productive elongation, on chromatin templates. We further report the purification of a chromatin transcription-enabling activity (CTEA) that, in a manner dependent upon p300 and acetyl-CoA, strongly potentiates transcription elongation through several contiguous nucleosomes as must occur in vivo. The transcription elongation factor SII is a major component of CTEA and strongly synergizes with p300 (histone acetylation) at a step subsequent to preinitiation complex formation. The purification of CTEA also identified HMGB2 as a coactivator that, while inactive on its own, enhances SII and p300 functions.
引用
收藏
页码:275 / 286
页数:12
相关论文
共 65 条
  • [1] Efficient release from promoter-proximal stall sites requires transcript cleavage factor TFIIS
    Adelman, K
    Marr, MT
    Werner, J
    Saunders, A
    Ni, ZY
    Andrulis, ED
    Lis, JT
    [J]. MOLECULAR CELL, 2005, 17 (01) : 103 - 112
  • [2] Selective requirements for histone H3 and H4N termini in p300-dependent transcriptional activation from chromatin
    An, WJ
    Palhan, VB
    Karymov, MA
    Leuba, SH
    Roeder, RG
    [J]. MOLECULAR CELL, 2002, 9 (04) : 811 - 821
  • [3] Running with RNA polymerase: eukaryotic transcript elongation
    Arndt, KM
    Kane, CM
    [J]. TRENDS IN GENETICS, 2003, 19 (10) : 543 - 550
  • [4] Transcription elongation through DNA arrest sites - A multistep process involving both RNA polymerase II subunit RPB9 and TFIIS
    Awrey, DE
    Weilbaecher, RG
    Hemming, SA
    Orlicky, SM
    Kane, CM
    Edwards, AM
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (23) : 14747 - 14754
  • [5] CELL-FREE SYSTEM FOR ASSEMBLY OF TRANSCRIPTIONALLY REPRESSED CHROMATIN FROM DROSOPHILA EMBRYOS
    BECKER, PB
    WU, C
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1992, 12 (05) : 2241 - 2249
  • [6] Transcription through chromatin: understanding a complex FACT
    Belotserkovskaya, R
    Saunders, A
    Lis, JT
    Reinberg, D
    [J]. BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 2004, 1677 (1-3): : 87 - 99
  • [7] FACT facilitates transcription-dependent nucleosome alteration
    Belotserkovskaya, R
    Oh, S
    Bondarenko, VA
    Orphanides, G
    Studitsky, VM
    Reinberg, D
    [J]. SCIENCE, 2003, 301 (5636) : 1090 - 1093
  • [8] Revised nomenclature for high mobility group (HMG) chromosomal proteins
    Bustin, M
    [J]. TRENDS IN BIOCHEMICAL SCIENCES, 2001, 26 (03) : 152 - 153
  • [9] The H3/H4 tetramer blocks transcript elongation by RNA polymerase II in vitro
    Chang, CH
    Luse, DS
    [J]. JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (37) : 23427 - 23434
  • [10] Genetic interactions between TFIIS and the Swi-Snf chromatin-remodeling complex
    Davie, JK
    Kane, CM
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 2000, 20 (16) : 5960 - 5973