How to develop a more accurate risk prediction model when there are few events

被引:486
作者
Pavlou, Menelaos [1 ]
Ambler, Gareth [1 ]
Seaman, Shaun R. [2 ]
Guttmann, Oliver [3 ]
Elliott, Perry [4 ]
King, Michael [5 ]
Omar, Rumana Z. [1 ]
机构
[1] UCL, Dept Stat Sci, London WC1E 6BT, England
[2] MRC, Cambridge, England
[3] UCL, Inst Cardiovasc Sci, Sch Life & Med Sci, London WC1E 6BT, England
[4] Heart Hosp, Inherited Cardiac Dis Unit, London, England
[5] UCL, Div Psychiat, London WC1E 6BT, England
来源
BMJ-BRITISH MEDICAL JOURNAL | 2015年 / 351卷
基金
英国医学研究理事会;
关键词
REGRESSION-ANALYSIS; PROGNOSIS;
D O I
10.1136/bmj.h3868
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
When the number of events is low relative to the number of predictors, standard regression could produce overfitted risk models that make inaccurate predictions. Use of penalised regression may improve the accuracy of risk prediction
引用
收藏
页数:5
相关论文
共 22 条
[1]   Generic, simple risk stratification model for heart valve surgery [J].
Ambler, G ;
Omar, RZ ;
Royston, P ;
Kinsman, R ;
Keogh, BE ;
Taylor, KM .
CIRCULATION, 2005, 112 (02) :224-231
[2]   An evaluation of penalised survival methods for developing prognostic models with rare events [J].
Ambler, G. ;
Seaman, S. ;
Omar, R. Z. .
STATISTICS IN MEDICINE, 2012, 31 (11-12) :1150-1161
[3]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.7326/M14-0697, 10.1002/bjs.9736, 10.1016/j.eururo.2014.11.025, 10.1016/j.jclinepi.2014.11.010, 10.1038/bjc.2014.639, 10.1186/s12916-014-0241-z, 10.1136/bmj.g7594, 10.7326/M14-0698]
[4]   General cardiovascular risk profile for use in primary care - The Framingham Heart Study [J].
D'Agostino, Ralph B. ;
Vasan, Ramachandran S. ;
Pencina, Michael J. ;
Wolf, Philip A. ;
Cobain, Mark ;
Massaro, Joseph M. ;
Kannel, William B. .
CIRCULATION, 2008, 117 (06) :743-753
[5]   Meta-analysis and aggregation of multiple published prediction models [J].
Debray, Thomas P. A. ;
Koffijberg, Hendrik ;
Nieboer, Daan ;
Vergouwe, Yvonne ;
Steyerberg, Ewout W. ;
Moons, Karel G. M. .
STATISTICS IN MEDICINE, 2014, 33 (14) :2341-2362
[6]   A WEAKLY INFORMATIVE DEFAULT PRIOR DISTRIBUTION FOR LOGISTIC AND OTHER REGRESSION MODELS [J].
Gelman, Andrew ;
Jakulin, Aleks ;
Pittau, Maria Grazia ;
Su, Yu-Sung .
ANNALS OF APPLIED STATISTICS, 2008, 2 (04) :1360-1383
[7]  
Harrell FE, 2001, REGRESSION MODELING, DOI DOI 10.1007/978-1-4757-3462-1
[8]   A solution to the problem of separation in logistic regression [J].
Heinze, G ;
Schemper, M .
STATISTICS IN MEDICINE, 2002, 21 (16) :2409-2419
[9]   Derivation and validation of QRISK, a new cardiovascular disease risk score for the United Kingdom: prospective open cohort study [J].
Hippisley-Cox, Julia ;
Coupland, Carol ;
Vinogradova, Yana ;
Robson, John ;
May, Margaret ;
Brindle, Peter .
BMJ-BRITISH MEDICAL JOURNAL, 2007, 335 (7611) :136-141
[10]  
Hosmer DW, 1989, APPL LOGISTIC REGRES