Nitrogen fertilization decreases forest soil fungal and bacterial biomass in three long-term experiments

被引:249
作者
Wallenstein, MD
McNulty, S
Fernandez, IJ
Boggs, J
Schlesinger, WH
机构
[1] Duke Univ, Nicholas Sch Envirom, Durham, NC 27708 USA
[2] USDA, Forest Serv, So Global Change Program, Raleigh, NC 27606 USA
[3] Univ Maine, Dept Plant Soil & Environm Sci, Orono, ME 04469 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
nitrogen fertilization; microbial biomass; nitrogen saturation; selective inhibition;
D O I
10.1016/j.foreco.2005.11.002
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
We examined the effects of N fertilization on forest soil fungal and bacterial biomass at three long-term experiments in New England (Harvard Forest, MA: Mt. Ascutney, VT; Bear Brook, ME). At Harvard Forest, chronic N fertilization has decreased organic soil microbial biomass C (MBC) by an average of 54% and substrate induced respiration (SIR) was decreased by an average of 45% in hardwood stands. In the pine stand, organic soil MBC was decreased by 40% and SIR decreased by an average of 35%. The fungal: bacterial activity ratio was also decreased in the hardwood stands from an average of 1.5 in the control plot to 1.0 in the High-N plot, and in the pine stands from 1.9 in control plot to 1.0 in the High-N stand. At Mt. Ascutney, MBC was reduced by an average of 59% and SIR by 52% in the High N plots relative to the unfertilized plots, and the fungal: bacteria] activity ratio was only slightly decreased. The Bear Brook watershed is in an earlier stage of N saturation (Stage 0-1) and did not exhibit significant fertilization effects on microbial biomass. Across all three sites, MBC and SIR had negative relationships with total N inputs in both mineral soils and organic soils, though the effect was much stronger in organic soils. Both MBC and SIR were positively correlated with dissolved organic C, total soil C, and bulk soil C:N ratios. These results are consistent with the N saturation hypothesis, but do not indicate a strong role for microbial N immobilization in preventing N loss. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:459 / 468
页数:10
相关论文
共 61 条
[1]   Nitrogen saturation in temperate forest ecosystems - Hypotheses revisited [J].
Aber, J ;
McDowell, W ;
Nadelhoffer, K ;
Magill, A ;
Berntson, G ;
Kamakea, M ;
McNulty, S ;
Currie, W ;
Rustad, L ;
Fernandez, I .
BIOSCIENCE, 1998, 48 (11) :921-934
[2]   NITROGEN SATURATION IN NORTHERN FOREST ECOSYSTEMS [J].
ABER, JD ;
NADELHOFFER, KJ ;
STEUDLER, P ;
MELILLO, JM .
BIOSCIENCE, 1989, 39 (06) :378-386
[3]   PLANT AND SOIL RESPONSES TO CHRONIC NITROGEN ADDITIONS AT THE HARVARD FOREST, MASSACHUSETTS [J].
ABER, JD ;
MAGILL, A ;
BOONE, R ;
MELILLO, JM ;
STEUDLER, P ;
BOWDEN, R .
ECOLOGICAL APPLICATIONS, 1993, 3 (01) :156-166
[4]   NITROGEN CYCLING AND NITROGEN SATURATION IN TEMPERATE FOREST ECOSYSTEMS [J].
ABER, JD .
TRENDS IN ECOLOGY & EVOLUTION, 1992, 7 (07) :220-224
[5]   NITROGEN SATURATION OF TERRESTRIAL ECOSYSTEMS [J].
AGREN, GI ;
BOSATTA, E .
ENVIRONMENTAL POLLUTION, 1988, 54 (3-4) :185-197
[6]   QUANTIFICATION OF BACTERIAL AND FUNGAL CONTRIBUTIONS TO SOIL RESPIRATION [J].
ANDERSON, JP ;
DOMSCH, KH .
ARCHIV FUR MIKROBIOLOGIE, 1973, 93 (02) :113-127
[7]   MINERALIZATION OF BACTERIA AND FUNGI IN CHLOROFORM-FUMIGATED SOILS [J].
ANDERSON, JPE ;
DOMSCH, KH .
SOIL BIOLOGY & BIOCHEMISTRY, 1978, 10 (03) :207-213
[8]   Relationship between SIR and FE estimates of microbial biomass C in deciduous forest soils at different pH [J].
Anderson, TH ;
Joergensen, RG .
SOIL BIOLOGY & BIOCHEMISTRY, 1997, 29 (07) :1033-1042
[9]  
[Anonymous], 2002, COMMUNITIES ECOSYSTE
[10]   Soil microbial activity in eleven Swedish coniferous forests in relation to site fertility and nitrogen fertilization [J].
Arnebrant, K ;
Baath, E ;
Soderstrom, B ;
Nohrstedt, HO .
SCANDINAVIAN JOURNAL OF FOREST RESEARCH, 1996, 11 (01) :1-6