First-passage times for random walks in bounded domains -: art. no. 260601

被引:148
作者
Condamin, S [1 ]
Bénichou, O [1 ]
Moreau, M [1 ]
机构
[1] Univ Paris 06, Lab Phys Theor Mat Condensee, UMR 7600, F-75255 Paris, France
关键词
D O I
10.1103/PhysRevLett.95.260601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present a novel computational method of first-passage times between a starting site and a target site of regular bounded lattices. We derive accurate expressions for all the moments of this first-passage time, validated by numerical simulations. Their range of validity is discussed. We also consider the case of a starting site and two targets. In addition, we present the extension to continuous Brownian motion. These results are of great relevance to any system involving diffusion in confined media.
引用
收藏
页数:4
相关论文
共 14 条
[1]  
[Anonymous], 1999, REVERSIBLE MARKOV CH
[2]  
Barton G, 1989, ELEMENTS GREENS FUNC
[3]   First-exit times and residence times for discrete random walks on finite lattices -: art. no. 016127 [J].
Condamin, S ;
Bénichou, O ;
Moreau, M .
PHYSICAL REVIEW E, 2005, 72 (01)
[4]  
CONDAMIN S, UNPUB
[5]   RESONANT ACTIVATION OVER A FLUCTUATING BARRIER [J].
DOERING, CR ;
GADOUA, JC .
PHYSICAL REVIEW LETTERS, 1992, 69 (16) :2318-2321
[6]   Kinetics of escape through a small hole [J].
Grigoriev, IV ;
Makhnovskii, YA ;
Berezhkovskii, AM ;
Zitserman, VY .
JOURNAL OF CHEMICAL PHYSICS, 2002, 116 (22) :9574-9577
[7]  
Hughes B. D., 1995, RANDOM WALKS RANDOM, V1
[8]  
Kampen N G V, 1992, STOCHASTIC PROCESSES, DOI 10.1016/B978-0-444-52965-7.X5000-4
[9]   Random walks on complex networks [J].
Noh, JD ;
Rieger, H .
PHYSICAL REVIEW LETTERS, 2004, 92 (11) :118701-1
[10]   Asymptotics of the principal eigenvalue and expected hitting time for positive recurrent elliptic operators in a domain with a small puncture [J].
Pinsky, RG .
JOURNAL OF FUNCTIONAL ANALYSIS, 2003, 200 (01) :177-197