BTZ black hole from (3+1) gravity

被引:7
作者
Cataldo, M
del Campo, S
García, A
机构
[1] Univ Bio Bio, Fac Ciencias, Dept Fis, Concepcion, Chile
[2] Pontificia Univ Catolica Valparaiso, Fac Ciencias Basicas & Matemat, Inst Fis, Valparaiso, Chile
[3] Inst Politecn Nacl, Ctr Invest & Estudios Avanzados, Dept Fis, Mexico City 07000, DF, Mexico
关键词
black holes in 2+1 and 3+1;
D O I
10.1023/A:1012041519422
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We propose an approach for constructing spatial slices of (3+1) spacetimes with cosmological constant but without a matter content, which yields (2+1) vacuum with A solutions. The reduction mechanism from (3+1) to (2+1) gravity is supported on a criterion in which the Weyl tensor components are required to vanish together with a dimensional reduction via an appropriate foliation. By using an adequate reduction mechanism from the Plebanski-Carter[A] solution in (3+1) gravity, the (2+1) BTZ solution can be obtained.
引用
收藏
页码:1245 / 1255
页数:11
相关论文
共 10 条
[1]   BLACK-HOLE IN 3-DIMENSIONAL SPACETIME [J].
BANADOS, M ;
TEITELBOIM, C ;
ZANELLI, J .
PHYSICAL REVIEW LETTERS, 1992, 69 (13) :1849-1851
[2]  
Carter B., 1968, Communications in Mathematical Physics, V10, P280
[3]   A NEW FAMILY OF EINSTEIN SPACES [J].
CARTER, B .
PHYSICS LETTERS A, 1968, A 26 (09) :399-+
[4]  
EISENHART LP, 1966, RIEMANNIAN GEOMETRY
[5]   Stationary strings and principal Killing triads in 2+1 gravity [J].
Frolov, V ;
Hendy, S ;
Larsen, AL .
NUCLEAR PHYSICS B, 1996, 468 (1-2) :336-352
[6]  
GARCIA A, 1998, LECT NOTES PHYSICS
[7]  
Kramer D., 1980, EXACT SOLUTIONS EINS
[8]   CLASS OF SOLUTIONS OF EINSTEIN-MAXWELL EQUATIONS [J].
PLEBANSKI, JF .
ANNALS OF PHYSICS, 1975, 90 (01) :196-255
[9]   ROTATING, CHARGED, AND UNIFORMLY ACCELERATING MASS IN GENERAL RELATIVITY [J].
PLEBANSKI, JF ;
DEMIANSKI, M .
ANNALS OF PHYSICS, 1976, 98 (01) :98-127
[10]  
Weinberg S., 1972, Gravitation and cosmology: principles and applications of the general theory of relativity