Archaeal diversity in waters from deep South African gold mines

被引:291
作者
Takai, K
Moser, DP
DeFlaun, M
Onstott, TC
Fredrickson, JK
机构
[1] Pacific NW Natl Lab, Richland, WA 99352 USA
[2] Japan Marine Sci & Technol Ctr, Frontier Res Program Deep Sea Environm, SUGAR Project, Yokosuka, Kanagawa 2370061, Japan
[3] Envirogen Inc, Lawrenceville, NJ 08648 USA
[4] Princeton Univ, Dept Geosci, Princeton, NJ 08544 USA
关键词
D O I
10.1128/AEM.67.21.5750-5760.2001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
A culture-independent molecular analysis of archaeal communities in waters collected from deep South African gold mines was performed by performing a PCR-mediated terminal restriction fragment length polymorphism (T-RFLP) analysis of rRNA genes (rDNA) in conjunction with a sequencing analysis of archaeal rDNA clone libraries. The water samples used represented various environments, including deep fissure water, mine service water, and water from an overlying dolomite aquifer. T-RFLP analysis revealed that the ribotype distribution of archaea varied with the source of water. The archaeal communities in the deep gold mine environments exhibited great phylogenetic diversity; the majority of the members were most closely related to uncultivated species. Some archaeal rDNA clones obtained from mine service water and dolomite aquifer water samples were most closely related to environmental rDNA clones from surface soil (soil clones) and marine environments (marine group I [MGI]). Other clones exhibited intermediate phylogenetic affiliation between soil clones and MGI in the Crenarchaeota. Fissure water samples, derived from active or dormant geothermal environments, yielded archaeal sequences that exhibited novel phylogeny, including a novel lineage of Euryarchaeota. These results suggest that deep South African gold mines harbor novel archaeal communities distinct from those observed in other environments. Based on the phylogenetic analysis of archaeal strains and rDNA clones, including the newly discovered archaeal rDNA clones, the evolutionary relationship and the phylogenetic organization of the domain Archaea are reevaluated.
引用
收藏
页码:5750 / 5760
页数:11
相关论文
共 50 条
[1]   Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J].
Altschul, SF ;
Madden, TL ;
Schaffer, AA ;
Zhang, JH ;
Zhang, Z ;
Miller, W ;
Lipman, DJ .
NUCLEIC ACIDS RESEARCH, 1997, 25 (17) :3389-3402
[2]  
[Anonymous], 1995, Standard methods for the examination of water and wastewater, V19th
[3]   Perspectives on archaeal diversity, thermophily and monophyly from environmental rRNA sequences [J].
Barns, SM ;
Delwiche, CF ;
Palmer, JD ;
Pace, NR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1996, 93 (17) :9188-9193
[4]   REMARKABLE ARCHAEAL DIVERSITY DETECTED IN A YELLOWSTONE-NATIONAL-PARK HOT-SPRING ENVIRONMENT [J].
BARNS, SM ;
FUNDYGA, RE ;
JEFFRIES, MW ;
PACE, NR .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1994, 91 (05) :1609-1613
[5]   GenBank [J].
Benson, DA ;
Karsch-Mizrachi, I ;
Lipman, DJ ;
Ostell, J ;
Rapp, BA ;
Wheeler, DL .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :15-18
[6]  
Bidle KA, 1999, FEMS MICROBIOL LETT, V177, P101, DOI 10.1016/S0378-1097(99)00297-9
[7]   Molecular phylogeny of archaea from soil [J].
Bintrim, SB ;
Donohue, TJ ;
Handelsman, J ;
Roberts, GP ;
Goodman, RM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1997, 94 (01) :277-282
[8]   Molecular microbial diversity in soils from eastern Amazonia: Evidence for unusual microorganisms and microbial population shifts associated with deforestation [J].
Borneman, J ;
Triplett, EW .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (07) :2647-2653
[9]  
Buckley DH, 1998, APPL ENVIRON MICROB, V64, P4333
[10]   Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana [J].
Cary, SC ;
Cottrell, MT ;
Stein, JL ;
Camacho, F ;
Desbruyeres, D .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (03) :1124-1130