Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation

被引:63
作者
Assunçao, AGL [1 ]
Pieper, B
Vromans, J
Lindhout, P
Aarts, MGM
Schat, H
机构
[1] Wageningen Univ, Genet Lab, Wageningen, Netherlands
[2] Vrije Univ Amsterdam, Inst Ecol Sci Earth & Life Sci, NL-1081 HV Amsterdam, Netherlands
[3] Wageningen Univ, Plant Breeding Lab, Wageningen, Netherlands
关键词
amplified fragment length polymorphism (AFLP) markers; genetic map; quantitative trait loci (QTL) analysis; Thlaspi caerulescens; zinc (Zn) hyperaccumulation;
D O I
10.1111/j.1469-8137.2005.01631.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Zinc (Zn) hyperaccumulation seems to be a constitutive species-level trait in Thlaspi caerulescens. When compared under conditions of equal Zn availability, considerable variation in the degree of hyperaccumulation is observed among accessions originating from different soil types. This variation offers an excellent opportunity for further dissection of the genetics of this trait. A T. caerulescens intraspecific cross was made between a plant from a nonmetallicolous accession [Lellingen (LE)], characterized by relatively high Zn accumulation, and a plant from a calamine accession [La Calamine (LC)], characterized by relatively low Zn accumulation. Zinc accumulation in roots and shoots segregated in the F3 population. This population was used to construct an LE/LC amplified fragment length polymorphism (AFLP)-based genetic linkage map and to map quantitative trait loci (QTL) for Zn accumulation. Two QTL were identified for root Zn accumulation, with the trait-enhancing alleles being derived from each of the parents, and explaining 21.7 and 16.6% of the phenotypic variation observed in the mapping population. Future development of more markers, based on Arabidopsis orthologous genes localized in the QTL regions, will allow fine-mapping and map-based cloning of the genes underlying the QTL.
引用
收藏
页码:21 / 32
页数:12
相关论文
共 50 条
[1]   Comparative genome analysis reveals extensive conservation of genome organisation for Arabidopsis thaliana and Capsella rubella [J].
Acarkan, A ;
Rossberg, M ;
Koch, M ;
Schmidt, R .
PLANT JOURNAL, 2000, 23 (01) :55-62
[2]   Naturally occurring variation in Arabidopsis:: an underexploited resource for plant genetics [J].
Alonso-Blanco, C ;
Koornneef, M .
TRENDS IN PLANT SCIENCE, 2000, 5 (01) :22-29
[3]   Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population [J].
Alonso-Blanco, C ;
Peeters, AJM ;
Koornneef, M ;
Lister, C ;
Dean, C ;
van den Bosch, N ;
Pot, J ;
Kuiper, MTR .
PLANT JOURNAL, 1998, 14 (02) :259-271
[4]   Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types [J].
Assunçao, AGL ;
Bookum, WM ;
Nelissen, HJM ;
Vooijs, R ;
Schat, H ;
Ernst, WHO .
NEW PHYTOLOGIST, 2003, 159 (02) :411-419
[5]   A cosegregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator Thlaspi caerulescens [J].
Assunçao, AGL ;
Ten Bookum, WM ;
Nelissen, HJM ;
Vooijs, R ;
Schat, H ;
Ernst, WHO .
NEW PHYTOLOGIST, 2003, 159 (02) :383-390
[6]   Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescens [J].
Assunçao, AGL ;
Martins, PD ;
De Folter, S ;
Vooijs, R ;
Schat, H ;
Aarts, MGM .
PLANT CELL AND ENVIRONMENT, 2001, 24 (02) :217-226
[7]   Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants [J].
Assunçao, AGL ;
Schat, H ;
Aarts, MGM .
NEW PHYTOLOGIST, 2003, 159 (02) :351-360
[8]   The Arabidopsis genome sequence as a tool for genome analysis in Brassicaceae.: A comparison of the Arabidopsis and Capsella rubella genomes [J].
Boivin, K ;
Acarkan, A ;
Mbulu, RS ;
Clarenz, O ;
Schmidt, R .
PLANT PHYSIOLOGY, 2004, 135 (02) :735-744
[9]   Genomics tools for QTL analysis and gene discovery [J].
Borevitz, JO ;
Chory, J .
CURRENT OPINION IN PLANT BIOLOGY, 2004, 7 (02) :132-136
[10]   DETECTION OF NICKELIFEROUS ROCKS BY ANALYSIS OF HERBARIUM SPECIMENS OF INDICATOR PLANTS [J].
BROOKS, RR ;
LEE, J ;
REEVES, RD ;
JAFFRE, T .
JOURNAL OF GEOCHEMICAL EXPLORATION, 1977, 7 (01) :49-57