Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast

被引:91
作者
Nakanishi, H
Morishita, M
Schwartz, CL
Coluccio, A
Engebrecht, J
Neiman, AM [1 ]
机构
[1] SUNY Stony Brook, Dept Biochem & Cell Biol, Stony Brook, NY 11794 USA
[2] Univ Calif Davis, Sect Mol & Cellular Biol, Davis, CA 95616 USA
[3] Univ Colorado, Boulder Lab 3D Elect Microscopy Cells, Boulder, CO 80309 USA
关键词
sporulation; prospore membrane; vesicle fusion; SNARE; phospholipase D;
D O I
10.1242/jcs.02841
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Spore formation in Saccharomyces cerevisiae requires the de novo formation of prospore membranes. The coalescence of secretory vesicles into a membrane sheet occurs on the cytoplasmic surface of the spindle pole body. Spo14p, the major yeast phospholipase D, is necessary for prospore membrane formation; however, the specific function of Spo14p in this process has not been elucidated. We report that loss of Spo14p blocks vesicle fusion, leading to the accumulation of prospore membrane precursor vesicles docked on the spindle pole body. A similar phenotype was seen when the t-SNARE Sso1p, or the partially redundant t-SNAREs Sec9p and Spo20p were mutated. Although phosphatidic acid, the product of phospholipase D action, was necessary to recruit Spo20p to the precursor vesicles, independent targeting of Spo20p to the membrane was not sufficient to promote fusion in the absence of SPO14. These results demonstrate a role for phospholipase D in vesicle fusion and suggest that phospholipase D-generated phosphatidic acid plays multiple roles in the fusion process.
引用
收藏
页码:1406 / 1415
页数:10
相关论文
共 54 条
[1]   YEAST SYNTAXINS SSO1P AND SSO2P BELONG TO A FAMILY OF RELATED MEMBRANE-PROTEINS THAT FUNCTION IN VESICULAR TRANSPORT [J].
AALTO, MK ;
RONNE, H ;
KERANEN, S .
EMBO JOURNAL, 1993, 12 (11) :4095-4104
[2]   SPO21 is required for meiosis-specific modification of the spindle pole body in yeast [J].
Bajgier, BK ;
Malzone, M ;
Nickas, M ;
Neiman, AM .
MOLECULAR BIOLOGY OF THE CELL, 2001, 12 (06) :1611-1621
[3]   THE SACCHAROMYCES-CEREVISIAE SEC14 GENE ENCODES A CYTOSOLIC FACTOR THAT IS REQUIRED FOR TRANSPORT OF SECRETORY PROTEINS FROM THE YEAST GOLGI-COMPLEX [J].
BANKAITIS, VA ;
MALEHORN, DE ;
EMR, SD ;
GREENE, R .
JOURNAL OF CELL BIOLOGY, 1989, 108 (04) :1271-1281
[4]   Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed) [J].
Bevis, BJ ;
Glick, BS .
NATURE BIOTECHNOLOGY, 2002, 20 (01) :83-87
[5]  
Byers B., 1981, The Molecular Biology of the Yeast Saccharomyces: Life Cycle and Inheritance, P59
[6]   Sec1p binds to SNARE complexes and concentrates at sites of secretion [J].
Carr, CM ;
Grote, E ;
Munson, M ;
Hughson, FM ;
Novick, PJ .
JOURNAL OF CELL BIOLOGY, 1999, 146 (02) :333-344
[7]   Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network [J].
Chen, YG ;
Siddhanta, A ;
Austin, CD ;
Hammond, SM ;
Sung, TC ;
Frohman, MA ;
Morris, AJ ;
Shields, D .
JOURNAL OF CELL BIOLOGY, 1997, 138 (03) :495-504
[8]   Phospholipases D1 and D2 regulate different phases of exocytosis in mast cells [J].
Choi, WS ;
Kim, YM ;
Combs, C ;
Frohman, MA ;
Beaven, MA .
JOURNAL OF IMMUNOLOGY, 2002, 168 (11) :5682-5689
[9]   MULTIFUNCTIONAL YEAST HIGH-COPY-NUMBER SHUTTLE VECTORS [J].
CHRISTIANSON, TW ;
SIKORSKI, RS ;
DANTE, M ;
SHERO, JH ;
HIETER, P .
GENE, 1992, 110 (01) :119-122
[10]   PHOSPHOLIPASE-D - A DOWNSTREAM EFFECTOR OF ARF IN GRANULOCYTES [J].
COCKCROFT, S ;
THOMAS, GMH ;
FENSOME, A ;
GENY, B ;
CUNNINGHAM, E ;
GOUT, I ;
HILES, I ;
TOTTY, NF ;
TRUONG, Q ;
HSUAN, JJ .
SCIENCE, 1994, 263 (5146) :523-526