AB-QTL analysis in spring barley:: II.: Detection of favourable exotic alleles for agronomic traits introgressed from wild barley (H-vulgare ssp spontaneum)

被引:120
作者
von Korff, M [1 ]
Wang, H [1 ]
Léon, J [1 ]
Pillen, K [1 ]
机构
[1] Univ Bonn, Chair Crop Sci & Plant Breeding, Inst Crop Sci & Resource Conservat, D-53115 Bonn, Germany
关键词
Hordeum vulgare ssp spontaneum; barley; SSR; AB-QTL; yield;
D O I
10.1007/s00122-006-0223-4
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The objective of the present study was to identify favourable exotic Quantitative Trait Locus (QTL) alleles for the improvement of agronomic traits in the BC2DH population S42 derived from a cross between the spring barley cultivar Scarlett and the wild barley accession ISR42-8 ( Hordeum vulgare ssp. spontaneum). QTLs were detected as a marker main effect and/or a marker x environment interaction effect ( M x E) in a three-factorial ANOVA. Using field data of up to eight environments and genotype data of 98 SSR loci, we detected 86 QTLs for nine agronomic traits. At 60 QTLs the marker main effect, at five QTLs the M x E interaction effect, and at 21 QTLs both the effects were significant. The majority of the M x E interaction effects were due to changes in magnitude and are, therefore, still valuable for marker assisted selection across environments. The exotic alleles improved performance in 31 (36.0%) of 86 QTLs detected for agronomic traits. The exotic alleles had favourable effects on all analysed quantitative traits. These favourable exotic alleles were detected, in particular on the short arm of chromosome 2H and the long arm of chromosome 4H. The exotic allele on 4HL, for example, improved yield by 7.1%. Furthermore, the presence of the exotic allele on 2HS increased the yield component traits ears per m 2 and thousand grain weight by 16.4% and 3.2%, respectively. The present study, hence, demonstrated that wild barley does harbour valuable alleles, which can enrich the genetic basis of cultivated barley and improve quantitative agronomic traits.
引用
收藏
页码:1221 / 1231
页数:11
相关论文
共 53 条
[1]   Localisation of genes for resistance against Blumeria graminis f.sp hordei and Puccinia graminis in a cross between a barley cultivar and a wild barley (Hordeum vulgare ssp spontaneum) line [J].
Backes, G ;
Madsen, LH ;
Jaiser, H ;
Stougaard, J ;
Herz, M ;
Mohler, V ;
Jahoor, A .
THEORETICAL AND APPLIED GENETICS, 2003, 106 (02) :353-362
[2]   Ecological-genomic diversity of microsatellites in wild barley, Hordeum spontaneum, populations in Jordan [J].
Baek, HJ ;
Beharav, A ;
Nevo, E .
THEORETICAL AND APPLIED GENETICS, 2003, 106 (03) :397-410
[3]   IDENTIFICATION OF RAPD MARKERS LINKED TO A RHYNCHOSPORIUM-SECALIS RESISTANCE LOCUS IN BARLEY USING NEAR-ISOGENIC LINES AND BULKED SEGREGANT ANALYSIS [J].
BARUA, UM ;
CHALMERS, KJ ;
HACKETT, CA ;
THOMAS, WTB ;
POWELL, W ;
WAUGH, R .
HEREDITY, 1993, 71 :177-184
[4]   Advanced backcross QTL analysis in tomato.: I.: Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum [J].
Bernacchi, D ;
Beck-Bunn, T ;
Eshed, Y ;
Lopez, J ;
Petiard, V ;
Uhlig, J ;
Zamir, D ;
Tanksley, S .
THEORETICAL AND APPLIED GENETICS, 1998, 97 (03) :381-397
[5]   Mapping QTL controlling yield and yield components in a spring barley (Hordeum vulgare L) cross using marker regression [J].
Bezant, J ;
Laurie, D ;
Pratchett, N ;
Chojecki, J ;
Kearsey, M .
MOLECULAR BREEDING, 1997, 3 (01) :29-38
[6]   Marker regression mapping of QTL controlling flowering time and plant height in a spring barley (Hordeum vulgare L) cross [J].
Bezant, J ;
Laurie, D ;
Pratchett, N ;
Chojecki, J ;
Kearsey, M .
HEREDITY, 1996, 77 :64-73
[7]   Comparative genetic mapping of loci affecting plant height and development in cereals [J].
Börner, A ;
Korzun, V ;
Worland, AJ .
EUPHYTICA, 1998, 100 (1-3) :245-248
[8]   QTL mapping and introgression of yield-related traits from Oryza glumaepatula to cultivated rice (Oryza sativa) using microsatellite markers [J].
Brondani, C ;
Rangel, PHN ;
Brondani, RPV ;
Ferreira, ME .
THEORETICAL AND APPLIED GENETICS, 2002, 104 (6-7) :1192-1203
[9]   Molecular mapping of the Oregon Wolfe Barleys: a phenotypically polymorphic doubled-haploid population [J].
Costa, JM ;
Corey, A ;
Hayes, PM ;
Jobet, C ;
Kleinhofs, A ;
Kopisch-Obusch, A ;
Kramer, SF ;
Kudrna, D ;
Li, M ;
Riera-Lizarazu, O ;
Sato, K ;
Szucs, P ;
Toojinda, T ;
Vales, MI ;
Wolfe, RI .
THEORETICAL AND APPLIED GENETICS, 2001, 103 (2-3) :415-424
[10]   Allele-dependent barley grain β-amylase activity [J].
Erkkilä, MJ ;
Leah, R ;
Ahokas, H ;
Cameron-Mills, V .
PLANT PHYSIOLOGY, 1998, 117 (02) :679-685