Combination of multiple classifiers using local accuracy estimates

被引:678
作者
Woods, K [1 ]
Kegelmeyer, WP [1 ]
Bowyer, K [1 ]
机构
[1] SANDIA NATL LABS, CTR COMPUTAT ENGN, LIVERMORE, CA 94551 USA
关键词
combination of classifiers; dynamic classifier selection; local classifier accuracy; classifier fusion; ROC analysis;
D O I
10.1109/34.588027
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a method for combining classifiers that uses estimates of each individual classifier's local accuracy in small regions of feature space surrounding an unknown test sample. An empirical evaluation using five real data sets confirms the validity of our approach compared to some other Combination of Multiple Classifiers algorithms. We also suggest a methodology for determining the best mix of individual classifiers.
引用
收藏
页码:405 / 410
页数:6
相关论文
共 18 条