A simplified transient model is presented to describe the migration of implanted tritium in the presence of trap sites across the bulk of metallic substrates whose thickness is decreasing with time due to erosion. The subject is relevant for quantifying the tritium inventory in - and permeation through - plasma facing armours in the next generation of D-T fuelled tokamak devices (i.e., the International Thermonuclear Experimental Reactor). This paper describes the equations of the physical model and the main assumptions used to simplify the complex analysis, and surveys the influence of several parameters such as the implantation flux, the erosion rate, the armour temperature, the armour thickness, the density and trapping energy of neutron-induced traps, etc., which are all expected to play a key role in the phenomena investigated. The examples presented to show the applicability of the model include the results of a study performed for beryllium armours exposed to heat and particle loads similar to those expected on the ITER divertor plasma facing components and comparison is made with cases where erosion does not play any role.