Including the Drag Effects of Canopies: Real Case Large-Eddy Simulation Studies

被引:34
作者
Aumond, Pierre [1 ]
Masson, Valery [1 ]
Lac, Christine [1 ]
Gauvreau, Benoit [2 ]
Dupont, Sylvain [3 ]
Berengier, Michel [2 ]
机构
[1] Meteo France CNRM GMME, F-31057 Toulouse, France
[2] Ifsttar, CS4, F-44344 Bouguenais, France
[3] INRA, EPHYSE UR1263, F-33140 Villenave Dornon, France
关键词
Canopy; Drag force approach; Large-eddy simulation; Meso-NH; TURBULENT KINETIC-ENERGY; STEEP ALPINE VALLEY; BOUNDARY-LAYER; FOREST EDGE; PART I; FLOW; MODEL; PARAMETERIZATION; MESOSCALE; BUDGETS;
D O I
10.1007/s10546-012-9758-x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We use the mesoscale meteorological model Meso-NH, taking the drag force of trees into account under stable, unstable and neutral conditions in a real case study. Large-eddy simulations (LES) are carried out for real orography, using a regional forcing model and including the energy and water fluxes between the surface (mostly grass with some hedges of trees) and the atmosphere calculated using a state-of-the-art soil-vegetation-atmosphere-transfer model. The formulation of the drag approach consists of adding drag terms to the momentum equation and subgrid turbulent kinetic energy dissipation, as a function of the foliage density. Its implementation in Meso-NH is validated using Advanced Regional Prediction System simulation results and measurements from Shaw and Schumann (Boundary-Layer Meteorol, 61(1):47-64, 1992). The simulation shows that the Meso-NH model successfully reproduces the flow within and above homogeneous covers. Then, real case studies are used in order to investigate the three different boundary layers in a LES configuration (resolution down to 2 m) over the "Lannemezan 2005" experimental campaign. Thus, we show that the model is able to reproduce realistic flows in these particular cases and confirm that the drag force approach is more efficient than the classical roughness approach in describing the flow in the presence of vegetation at these resolutions.
引用
收藏
页码:65 / 80
页数:16
相关论文
共 37 条
[1]  
Aumond P, 2012, P AC 2012 JOINT SFA
[2]   Exploring the Effects of Microscale Structural Heterogeneity of Forest Canopies Using Large-Eddy Simulations [J].
Bohrer, Gil ;
Katul, Gabriel G. ;
Walko, Robert L. ;
Avissar, Roni .
BOUNDARY-LAYER METEOROLOGY, 2009, 132 (03) :351-382
[3]  
BOUGEAULT P, 1989, MON WEATHER REV, V117, P1872, DOI 10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO
[4]  
2
[5]  
Buttner G., 2004, EARSeL eProceedings, V3, P331
[6]   The effects of canopy leaf area index on airflow across forest edges: Large-eddy simulation and analytical results [J].
Cassiani, M. ;
Katul, G. G. ;
Albertson, J. D. .
BOUNDARY-LAYER METEOROLOGY, 2008, 126 (03) :433-460
[7]   Large eddy simulation of pollen transport in the atmospheric boundary layer [J].
Chamecki, Marcelo ;
Meneveau, Charles ;
Parlange, Marc B. .
JOURNAL OF AEROSOL SCIENCE, 2009, 40 (03) :241-255
[8]   High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments [J].
Chow, FK ;
Weigel, AP ;
Street, RL ;
Rotach, MW ;
Xue, M .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2006, 45 (01) :63-86
[9]   A turbulence scheme allowing for mesoscale and large-eddy simulations [J].
Cuxart, J ;
Bougeault, P ;
Redelsperger, JL .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2000, 126 (562) :1-30
[10]   Stable atmospheric boundary-layer experiment in Spain (SABLES 98):: A report [J].
Cuxart, J ;
Yagüe, C ;
Morales, G ;
Terradellas, E ;
Orbe, J ;
Calvo, J ;
Fernández, A ;
Soler, MR ;
Infante, C ;
Buenestado, P ;
Espinalt, A ;
Joergensen, HE ;
Rees, JM ;
Vilá, J ;
Redondo, JM ;
Cantalapiedra, IR ;
Conangla, L .
BOUNDARY-LAYER METEOROLOGY, 2000, 96 (03) :337-370