Submanifolds and quotient manifolds in noncommutative geometry

被引:20
作者
Masson, T
机构
[1] Lab. de Phys. Theor./Hautes Energies, Université Paris XI, Bâtiment 211
关键词
D O I
10.1063/1.531522
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define and study noncommutative generalizations of submanifolds and quotient manifolds using the derivation-based differential calculus introduced by M. Dubois-Violette and P. Michor. We give examples to illustrate these definitions. (C) 1996 American Institute of Physics.
引用
收藏
页码:2484 / 2497
页数:14
相关论文
共 10 条
[1]  
[Anonymous], 1993, ACTA MATH U COMENIAN
[2]  
CONNES A, 1986, PUBL MATH IHES, V62, P257
[3]  
DUBOISVIOLETTE M, 1994, CR ACAD SCI I-MATH, V319, P927
[4]   NONCOMMUTATIVE DIFFERENTIAL GEOMETRY AND NEW MODELS OF GAUGE-THEORY [J].
DUBOISVIOLETTE, M ;
KERNER, R ;
MADORE, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1990, 31 (02) :323-330
[5]  
DUBOISVIOLETTE M, 1988, CR ACAD SCI I-MATH, V307, P403
[6]  
DUBOISVIOLETTE M, IN PRESS J GEOM PHYS
[7]  
DUBOISVIOLETTE M, 1991, LECTURE NOTES PHYSIC, V375
[8]  
Gerstenhaber M., 1988, DEFORMATION THEORY A, P11
[9]  
GERSTENHABER M, 1992, LECTURE NOTES MATH, V1510
[10]  
SCHLICHENMAIER M, 1971, STAT MECH QUANTUM FI