Cytogenetic and molecular characterization of heterochromatin gene models in Drosophila melanogaster

被引:20
作者
Rossi, Fabrizio
Moschetti, Roberta
Caizzi, Ruggiero
Corradini, Nicoletta
Dimitri, Patrizio
机构
[1] Univ Roma La Sapienza, Dipartimento Genet & Biol Mol Charles Darwin, Lab Genomica Funzionale & Proteom Sistemi Comples, I-00185 Rome, Italy
[2] Univ Bari, Dipartimento Genet & Microbiol, I-70126 Bari, Italy
关键词
D O I
10.1534/genetics.106.065441
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In the past decade, genome-sequencing projects have yielded a great amount of information on DNA sequences in several organisms. The release of the Drosophila melanogaster, heterochromatin sequence by the Drosophila Heterochromatin Genome Project (DHGP) has greatly facilitated studies of mapping, molecular organization, and function of genes located in pericentromeric heterochromatin. Surprisingly, genome annotation has predicted at least 450 heterochromatic gene models, a figure 10-fold above that defined by genetic analysis. To gain further insight into the locations and functions of D. metanogaster heterochromatic genes and genome organization, we have FISH mapped 41 gene models relative to the stained bands of mitotic chromosomes and the proximal divisions of polytene chromosomes. These genes are contained in eight large scaffolds, which together account for similar to 1.4 Mb of heterochromatic DNA sequence. Moreover, developmental Northern analysis showed that the expression of 15 heterochromatic gene models tested is similar to that of the vital heterochromatic gene Nipped-A, in that it is not limited to specific stages, but is present throughout all development, despite its location in a supposedly "silent" region of the genome. This result is consistent with the idea that genes resident in heterochromatin can encode essential functions.
引用
收藏
页码:595 / 607
页数:13
相关论文
共 53 条
[1]   The genome sequence of Drosophila melanogaster [J].
Adams, MD ;
Celniker, SE ;
Holt, RA ;
Evans, CA ;
Gocayne, JD ;
Amanatides, PG ;
Scherer, SE ;
Li, PW ;
Hoskins, RA ;
Galle, RF ;
George, RA ;
Lewis, SE ;
Richards, S ;
Ashburner, M ;
Henderson, SN ;
Sutton, GG ;
Wortman, JR ;
Yandell, MD ;
Zhang, Q ;
Chen, LX ;
Brandon, RC ;
Rogers, YHC ;
Blazej, RG ;
Champe, M ;
Pfeiffer, BD ;
Wan, KH ;
Doyle, C ;
Baxter, EG ;
Helt, G ;
Nelson, CR ;
Miklos, GLG ;
Abril, JF ;
Agbayani, A ;
An, HJ ;
Andrews-Pfannkoch, C ;
Baldwin, D ;
Ballew, RM ;
Basu, A ;
Baxendale, J ;
Bayraktaroglu, L ;
Beasley, EM ;
Beeson, KY ;
Benos, PV ;
Berman, BP ;
Bhandari, D ;
Bolshakov, S ;
Borkova, D ;
Botchan, MR ;
Bouck, J ;
Brokstein, P .
SCIENCE, 2000, 287 (5461) :2185-2195
[2]  
[Anonymous], 1988, Heterochromatin: Molecular an structural aspects
[3]  
Berghella L, 1996, GENETICS, V144, P117
[4]   THE DROSOPHILA ROLLED LOCUS ENCODES A MAP KINASE REQUIRED IN THE SEVENLESS SIGNAL-TRANSDUCTION PATHWAY [J].
BIGGS, WH ;
ZAVITZ, KH ;
DICKSON, B ;
VANDERSTRATEN, A ;
BRUNNER, D ;
HAFEN, E ;
ZIPURSKY, SL .
EMBO JOURNAL, 1994, 13 (07) :1628-1635
[5]   Juxtacentromeric region of human chromosome 21:: a boundary between centromeric heterochromatin and euchromatic chromosome arms [J].
Brun, ME ;
Ruault, M ;
Ventura, M ;
Roizès, G ;
De Sario, A .
GENE, 2003, 312 :41-50
[6]   Selection for short introns in highly expressed genes [J].
Castillo-Davis, CI ;
Mekhedov, SL ;
Hartl, DL ;
Koonin, EV ;
Kondrashov, FA .
NATURE GENETICS, 2002, 31 (04) :415-418
[7]   FISH analysis of Drosophila melanogaster heterochromatin using BACs and P elements [J].
Corradini, N ;
Rossi, F ;
Vernì, F ;
Dimitri, P .
CHROMOSOMA, 2003, 112 (01) :26-37
[8]  
Coulthard AB, 2003, GENOME, V46, P343, DOI [10.1139/g03-010, 10.1139/G03-010]
[9]   Direct evidence of a role for heterochromatin in meiotic chromosome segregation [J].
Dernburg, AF ;
Sedat, JW ;
Hawley, RS .
CELL, 1996, 86 (01) :135-146
[10]  
DEVLIN RH, 1990, GENETICS, V125, P129