Gene cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus strains Q15 and NRRL B-16531

被引:161
作者
Whyte, LG
Smits, THM
Labbé, D
Witholt, B
Greer, CW
van Beilen, JB [1 ]
机构
[1] ETH Honggerberg, Swiss Fed Inst Technol, Inst Biotechnol, CH-8093 Zurich, Switzerland
[2] Natl Res Council Canada, Biotechnol Res Inst, Montreal, PQ H4P 2R2, Canada
关键词
D O I
10.1128/AEM.68.12.5933-5942.2002
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The alkane hydroxylase systems of two Rhodococcus strains (NRRL B-16531 and Q15, isolated from different geographical locations) were characterized. Both organisms contained at least four alkane monooxygenase gene homologs (alkB1, alkB2, alkB3, and alkB4). In both strains, the alkB1 and alkB2 homologs were part of alk gene clusters, each encoding two rubredoxins (rubA1 and rubA2; rubA3 and rubA4), a putative TOR transcriptional regulatory protein (alkU1; alkU2), and, in the alkB1 cluster, a rubredoxin reductase (rubB). The alkB3 and alkB4 homologs were found as separate genes which were not part of alk gene clusters. Functional heterologous expression of some of the rhodococcal alk genes (alkB2, rubA2, and rubA4 [NRRL B-16531]; alkB2 and rubB [Q15]) was achieved in Escherichia coli and Pseudomonas expression systems. Pseudomonas recombinants containing rhodococcal alkB2 were able to mineralize and grow on C-12 to C-16 n-alkanes. All rhodococcal alkane monooxygenases possessed the highly conserved eight-histidine motif, including two apparent alkane monooxygenase signature motifs (LQRH[S/A]DHH and NYXEHYG[L/M]), and the six hydrophobic membrane-spanning regions found in all alkane monooxygenases related to the Pseudomonas putida GPo1 alkane monooxygenase. The presence of multiple alkane hydroxylases in the two rhodococcal strains is reminiscent of other multiple-degradative-enzyme systems reported in Rhodococcus.
引用
收藏
页码:5933 / 5942
页数:10
相关论文
共 57 条
[1]  
ALTSCHUL SF, 1990, J MOL BIOL, V215, P403, DOI 10.1006/jmbi.1990.9999
[2]   3 DIFFERENT 2,3-DIHYDROXYBIPHENYL-1,2-DIOXYGENASE GENES IN THE GRAM-POSITIVE POLYCHLOROBIPHENYL-DEGRADING BACTERIUM RHODOCOCCUS-GLOBERULUS P6 [J].
ASTURIAS, JA ;
TIMMIS, KN .
JOURNAL OF BACTERIOLOGY, 1993, 175 (15) :4631-4640
[3]  
AUSUBEL FM, 1990, CURRENT PROTOCOLS MO, V2
[4]   Enantioselective biotransformations using rhodococci [J].
Beard, TM ;
Page, MI .
ANTONIE VAN LEEUWENHOEK INTERNATIONAL JOURNAL OF GENERAL AND MOLECULAR MICROBIOLOGY, 1998, 74 (1-3) :99-106
[5]  
CHERBROU H, 1999, J BACTERIOL, V181, P4805
[6]   Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence [J].
Cole, ST ;
Brosch, R ;
Parkhill, J ;
Garnier, T ;
Churcher, C ;
Harris, D ;
Gordon, SV ;
Eiglmeier, K ;
Gas, S ;
Barry, CE ;
Tekaia, F ;
Badcock, K ;
Basham, D ;
Brown, D ;
Chillingworth, T ;
Connor, R ;
Davies, R ;
Devlin, K ;
Feltwell, T ;
Gentles, S ;
Hamlin, N ;
Holroyd, S ;
Hornby, T ;
Jagels, K ;
Krogh, A ;
McLean, J ;
Moule, S ;
Murphy, L ;
Oliver, K ;
Osborne, J ;
Quail, MA ;
Rajandream, MA ;
Rogers, J ;
Rutter, S ;
Seeger, K ;
Skelton, J ;
Squares, R ;
Squares, S ;
Sulston, JE ;
Taylor, K ;
Whitehead, S ;
Barrell, BG .
NATURE, 1998, 393 (6685) :537-+
[7]   Thiocarbamate herbicide-inducible nonheme haloperoxidase of Rhodococcus erythropolis NI86/21 [J].
DeSchrijver, A ;
Nagy, I ;
Schoofs, G ;
Proost, P ;
Vanderleyden, J ;
vanPee, KH ;
DeMot, R .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1997, 63 (05) :1911-1916
[8]   ILLEGITIMATE INTEGRATION OF NON-REPLICATIVE VECTORS IN THE GENOME OF RHODOCOCCUS-FASCIANS UPON ELECTROTRANSFORMATION AS AN INSERTIONAL MUTAGENESIS SYSTEM [J].
DESOMER, J ;
CRESPI, M ;
VANMONTAGU, M .
MOLECULAR MICROBIOLOGY, 1991, 5 (09) :2115-2124
[9]   HIGH-EFFICIENCY TRANSFORMATION OF ESCHERICHIA-COLI BY HIGH-VOLTAGE ELECTROPORATION [J].
DOWER, WJ ;
MILLER, JF ;
RAGSDALE, CW .
NUCLEIC ACIDS RESEARCH, 1988, 16 (13) :6127-6145
[10]  
EGGINK G, 1987, J BIOL CHEM, V262, P17712