Solutes involved in osmotic adjustment to increasing salinity in suspension cells of Alternanthera philoxeroides Griseb

被引:12
作者
Longstreth, DJ [1 ]
Burow, GB [1 ]
Yu, G [1 ]
机构
[1] Louisiana State Univ, Dept Biol Sci, Baton Rouge, LA 70803 USA
关键词
betaine; plant; salt stress; sodium chloride; tissue culture; turgor;
D O I
10.1023/B:TICU.0000025648.17065.88
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cell recovery from osmotic stress was studied in suspension cell cultures from Alternanthera philoxeroides [Mart.] Griseb. Changes in different classes of cellular solutes were measured after cells were transferred from 0 to 200 mM NaCl (high salt) to obtain an integrated picture of the solute pools involved in osmotic adjustment. By 2 h, cellular [Na+] and [Cl-] had increased several-fold, potentially accounting for the osmotic adjustment that produced a rapid recovery of cell turgor. There was a four-fold increase in the concentration of quaternary ammonium compounds (QAC) by 12 h and a slower increase for several days afterward. Betaine aldehyde dehydrogenase (BADH) is required for synthesis of glycine betaine, a QAC produced by a range of organisms in response to osmotic stress. Western-blot analysis for BADH suggested that glycine betaine was a significant component of the QAC solutes. The amount of BADH was generally similar at different sampling times for control and high salt cells, unlike previous reports of stimulation by osmotic stress in intact plants of some species. Between 3 and 7 days after cell transfer to high salt, other organic solutes increased in concentration and [Na+] and [Cl-] decreased. In A. philoxeroides, high [Na+] and [Cl-] produce rapid osmotic adjustment but organic solutes apparently replace these potentially harmful inorganic ions after the recovery of turgor.
引用
收藏
页码:225 / 230
页数:6
相关论文
共 30 条
[1]   Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis [J].
Apse, MP ;
Aharon, GS ;
Snedden, WA ;
Blumwald, E .
SCIENCE, 1999, 285 (5431) :1256-1258
[2]   Increased vacuolar and plasma membrane H+-ATPase activities in Salicornia bigelovii Torr in response to NaCl [J].
Ayala, F ;
OLeary, JW ;
Schumaker, KS .
JOURNAL OF EXPERIMENTAL BOTANY, 1996, 47 (294) :25-32
[3]   Effect of sudden salt stress on ion fluxes in intact wheat suspension cells [J].
Babourina, O ;
Leonova, T ;
Shabala, S ;
Newman, I .
ANNALS OF BOTANY, 2000, 85 (06) :759-767
[4]   GROWTH AND OSMOTIC ADJUSTMENT OF CULTURED SUSPENSION CELLS FROM ALTERNANTHERA-PHILOXEROIDES (MART) GRISEB AFTER AN ABRUPT INCREASE IN SALINITY [J].
BALAGTASBUROW, GE ;
MORONEY, JV ;
LONGSTRETH, DJ .
JOURNAL OF EXPERIMENTAL BOTANY, 1993, 44 (260) :673-679
[5]   RAPID DETERMINATION OF FREE PROLINE FOR WATER-STRESS STUDIES [J].
BATES, LS ;
WALDREN, RP ;
TEARE, ID .
PLANT AND SOIL, 1973, 39 (01) :205-207
[6]   Sodium transport and salt tolerance in plants [J].
Blumwald, E .
CURRENT OPINION IN CELL BIOLOGY, 2000, 12 (04) :431-434
[7]   SALINITY EFFECTS ON WATER POTENTIAL COMPONENTS AND BULK ELASTIC-MODULUS OF ALTERNANTHERA-PHILOXEROIDES (MART) GRISEB [J].
BOLANOS, JA ;
LONGSTRETH, DJ .
PLANT PHYSIOLOGY, 1984, 75 (02) :281-284
[8]   Developing salt tolerant plants in a new century: a molecular biology approach [J].
Borsani, O ;
Valpuesta, V ;
Botella, MA .
PLANT CELL TISSUE AND ORGAN CULTURE, 2003, 73 (02) :101-115
[9]  
BURNETTE WN, 1981, ANAL BIOCHEM, V112, P195, DOI 10.1016/0003-2697(81)90281-5
[10]  
Chua N. H., 1980, METHOD ENZYMOL, V69, P434